SIA OpenIR  > 机器人学研究室
Image segmentation by combining the global and local properties
Wang ZZ(王振洲)
作者部门机器人学研究室
关键词Segmentation Histogram Gibbs Distribution Slope Difference Distribution
发表期刊Expert Systems with Applications
ISSN0957-4174
2017
卷号87页码:30-40
收录类别SCI ; EI
EI收录号20172403764750
WOS记录号WOS:000407183900003
产权排序1
资助机构Chinese Academy of Sciences for the funding with the grant number Y5A1270101.
摘要Image segmentation plays a fundamental role in many computer vision applications. It is challenging because of the vast variety of images involved and the diverse segmentation requirements in different applications. As a result, it remains an open problem after so many years of study by researchers all over the world. In this paper, we propose to segment the image by combing its global and local properties. The global properties of the image are characterized by the mean values of different pixel classes and the continuous boundary of the object or region. The local properties are characterized by the interactions of neighboring pixels and the image edge. The proposed approach consists of four basic parts corresponding to the global or local property of the image respectively: (1) The slope difference distribution that is used to compute the global mean values of different pixel classes; (2) Energy minimization to remove inhomogeneity based on Gibbs distribution that complies with local interactions of neighboring pixels; (3) The Canny operator that is used to detect the local edge of the object or the region; (4) The polynomial spline that is used to smooth the boundary of the object or the region. These four basic parts are applied one by one and each of them is indispensable for the achieved high accuracy. A large variety of images are used to validate the proposed approach and the results are favorable.
语种英语
WOS标题词Science & Technology ; Technology
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
关键词[WOS]NOISE ESTIMATION ; ACTIVE CONTOURS ; RANDOM-FIELDS ; ALGORITHMS ; CUTS
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/20754
专题机器人学研究室
通讯作者Wang ZZ(王振洲)
作者单位State Key Lab of Robotics, Shenyang Institute of Automation, Chinese Academy of Science (CAS), Shenyang, China
推荐引用方式
GB/T 7714
Wang ZZ. Image segmentation by combining the global and local properties[J]. Expert Systems with Applications,2017,87:30-40.
APA Wang ZZ.(2017).Image segmentation by combining the global and local properties.Expert Systems with Applications,87,30-40.
MLA Wang ZZ."Image segmentation by combining the global and local properties".Expert Systems with Applications 87(2017):30-40.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Image segmentation b(4766KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang ZZ(王振洲)]的文章
百度学术
百度学术中相似的文章
[Wang ZZ(王振洲)]的文章
必应学术
必应学术中相似的文章
[Wang ZZ(王振洲)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Image segmentation by combining the global and local properties.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。