SIA OpenIR  > 光电信息技术研究室
基于DBSCAN聚类算法的异常轨迹检测
其他题名Trajectory outlier detection based on DBSCAN clustering algorithm
周培培; 丁庆海; 罗海波; 侯幸林
作者部门光电信息技术研究室
关键词时空异常轨迹检测 Vmdl分割准则 Dbscan聚类算法 二级检测算法
发表期刊红外与激光工程
ISSN1007-2276
2017
卷号46期号:5页码:238-245
收录类别EI ; CSCD
EI收录号20173304042260
CSCD记录号CSCD:6000360
产权排序1
摘要现有的异常轨迹检测算法往往侧重于检测轨迹的空域异常,忽略了对轨迹时域异常的检测,并且检测精确度不高,针对此类问题,提出了基于增强聚类的异常轨迹检测算法。首先,采用基于速度的最小描述长度(VMDL)准则把轨迹简化成有序线段;然后,使用改进的线段间的距离定义,基于DBSCAN算法把线段分为不同的类,以建模局部正常运动模式;最后,采用先检测空间异常性再检测时间异常性的二级检测算法,检测时空异常轨迹点。在多个测试集上的实验结果表明:该算法可以检测位置、角度、速度等三种时空异常轨迹点,相对于其他算法,明显提高了异常轨迹检测的精确度。
其他摘要Existing traditional trajectory outlier detection algorithms always focus on spatial outliers and ignore temporal outliers, and the accuracy is relatively low. To solve these problems, a simple and effective approach based on enhanced clustering algorithm was proposed to detect spatio-temporal trajectory outliers. Firstly, each original trajectory was simplified into a set of sequential line segments with the velocity鄄based minimum description length (VMDL) partition principle. Secondly, the distance formula between line segments was improved to enhance the clustering performance. Using DBSCAN algorithm, the line segments were classified into different groups which could represent local normal behaviors. Thirdly, outliers were detected using two鄄level detection algorithm which first detected spatial outliers and then detected temporal outliers. Experimental results on multiple trajectory data sets demonstrate that the proposed algorithm could successfully detect three kinds of spatio-temporal outliers, position, angle and velocity. Compared with other methods, the precision and accuracy make great improvement.
语种中文
引用统计
被引频次:1[CSCD]   [CSCD记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/20770
专题光电信息技术研究室
通讯作者周培培
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
3.航天恒星科技有限公司
4.中国科学院光电信息处理重点实验室
推荐引用方式
GB/T 7714
周培培,丁庆海,罗海波,等. 基于DBSCAN聚类算法的异常轨迹检测[J]. 红外与激光工程,2017,46(5):238-245.
APA 周培培,丁庆海,罗海波,&侯幸林.(2017).基于DBSCAN聚类算法的异常轨迹检测.红外与激光工程,46(5),238-245.
MLA 周培培,et al."基于DBSCAN聚类算法的异常轨迹检测".红外与激光工程 46.5(2017):238-245.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于DBSCAN聚类算法的异常轨迹检测.(1143KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[周培培]的文章
[丁庆海]的文章
[罗海波]的文章
百度学术
百度学术中相似的文章
[周培培]的文章
[丁庆海]的文章
[罗海波]的文章
必应学术
必应学术中相似的文章
[周培培]的文章
[丁庆海]的文章
[罗海波]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于DBSCAN聚类算法的异常轨迹检测.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。