SIA OpenIR  > 光电信息技术研究室
基于深度学习的目标跟踪方法研究现状与展望
其他题名Status and prospect of target tracking based on deep learning
罗海波; 许凌云; 惠斌; 常铮
作者部门光电信息技术研究室
关键词目标跟踪 深度学习 计算机视觉 精确制导
发表期刊红外与激光工程
ISSN1007-2276
2017
卷号46期号:5页码:14-20
收录类别EI ; CSCD
EI收录号20173304042228
CSCD记录号CSCD:6000331
产权排序1
资助机构总装预研项目(51301030108)
摘要目标跟踪是计算机视觉领域的重要研究方向之一,在精确制导、智能视频监控、人机交互、机器人导航、公共安全等领域有着重要的作用。目标跟踪的基本问题是在一个视频或图像序列中选择感兴趣的目标,在接下来的连续帧中,找到该目标的准确位置并形成其运动轨迹。目标跟踪是一个颇具挑战性的问题,目标的非刚性变化往往改变了目标的表观模型,同时复杂的光照变化、目标与场景间的遮挡、背景中相似物体的干扰和摄像机的抖动等使目标跟踪任务变得更加困难。近年来,随着深度学习在目标检测和识别等领域中取得巨大的突破,许多学者开始将深度学习模型引入到目标跟踪中,并在一系列数据评测集上取得了优于传统方法的性能,逐渐开启了目标跟踪领域的新篇章...
其他摘要The inverse synthetic aperture lidar (ISAL) have attracted increasing attention for its merits including small visual tracking which is considered as one of the important research topics in the field of computer vision due to its key role in versatile applications, such as precision guidance, intelligent video surveillance, human -computer interaction, robot navigation and public safety. The basic idea for implementing visual tracking is composed of finding the target object in a video or sequence of images, then determining its exact position in the next successive frames and finally generating the corresponding trajectory of this object. Visual tracking, however, is still a challenging problem in practice while taking into account the abrupt appearance changes of the target objects induced by their non-rigid transformation, the sophisticated lighting variation, the obstruction by the block or similar objects in the background and the camera jitter. Motivated by the successful applications in target detection and recognition in recent years, plenty of deep learning models have been integrated in the visual tracking and better performance over traditional methods was achieved in a series of data evaluations, which opens a new door in the field of visual tracking. In this paper, the overview and progress on visual tracking were summarized. The current challenges and corresponding solving approaches in this field are introduced firstly and in particular, several novel and mainstream visual tracking algorithms based on the deep learning are specially described and analyzed in details, including their basic ideas, advantages and disadvantages and future prospect.
语种中文
引用统计
被引频次:3[CSCD]   [CSCD记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/20771
专题光电信息技术研究室
通讯作者罗海波
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
3.中国科学院光电信息处理重点实验室
4.辽宁省图像理解与视觉计算重点实验室
推荐引用方式
GB/T 7714
罗海波,许凌云,惠斌,等. 基于深度学习的目标跟踪方法研究现状与展望[J]. 红外与激光工程,2017,46(5):14-20.
APA 罗海波,许凌云,惠斌,&常铮.(2017).基于深度学习的目标跟踪方法研究现状与展望.红外与激光工程,46(5),14-20.
MLA 罗海波,et al."基于深度学习的目标跟踪方法研究现状与展望".红外与激光工程 46.5(2017):14-20.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于深度学习的目标跟踪方法研究现状与展望(1001KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[罗海波]的文章
[许凌云]的文章
[惠斌]的文章
百度学术
百度学术中相似的文章
[罗海波]的文章
[许凌云]的文章
[惠斌]的文章
必应学术
必应学术中相似的文章
[罗海波]的文章
[许凌云]的文章
[惠斌]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于深度学习的目标跟踪方法研究现状与展望.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。