SIA OpenIR  > 光电信息技术研究室
一种基于图像显著结构的噪声模糊图像盲目反卷积方法
Alternative TitleBased on image it has obvious structure the noise of the fuzzy image the blind de-convolution method
赵怀慈; 孙士洁; 吕进锋; 郝明国; 李波
Department光电信息技术研究室
Rights Holder中国科学院沈阳自动化研究所
Patent Agent沈阳科苑专利商标代理有限公司 21002
Country中国
Subtype发明
Status实审
Abstract本发明公开一种基于图像显著结构的噪声模糊图像盲目反卷积方法。包括以下步骤:输入待去模糊的图像数据;对输入图像数据进行降噪预处理;对降噪预处理后的图像进行显著边缘提取;对显著边缘提取后的图像进行Shock滤波重建图像强边缘;利用图像强边缘计算用于模糊核估计的图像显著边缘;初始模糊核估计;利用所估计的初始模糊核进行粗略图像复原;对粗略图像复原后的基于ISD的模糊核修正;图像复原。本发明可有效地处理图像去模糊对噪声敏感问题,准确地估计出噪声模糊图像的模糊核,并给出高质量的复原图像。
Other AbstractThe invention claims a based on image it has obvious structure the noise of the fuzzy image the blind de-convolution method. Comprises the following steps: Input to remove fuzzy image data; To the input image data to reduce the noise pre-treatment; Can reduce noise in the picture after treatment is carried out it has obvious edge extraction; Is obvious the edge extraction after the images to shock wave filtering reconstruction image strong edge; By using the image calculating edge intensity and it is used for nuclear fuzzy evaluation image has obvious edge; Initial estimating blurred core; Using the estimated initial fuzzy core to rough image restoration; The rough image restoration after isd based on fuzzy correction core; Image restoration. The invention can effectively process fuzzy image removing the noise is sensitive to solve the problem of accurately estimating the noise of fuzzy image fuzzy core and the high quality of the restored image.
PCT Attributes
Application Date2016-01-08
2017-07-18
Application NumberCN201610010171.1
Open (Notice) NumberCN106960417A
Language中文
Contribution Rank1
Document Type专利
Identifierhttp://ir.sia.cn/handle/173321/20883
Collection光电信息技术研究室
Affiliation中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
赵怀慈,孙士洁,吕进锋,等. 一种基于图像显著结构的噪声模糊图像盲目反卷积方法[P]. 2017-07-18.
Files in This Item: Download All
File Name/Size DocType Version Access License
CN201610010171.1.pdf(580KB)专利 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[赵怀慈]'s Articles
[孙士洁]'s Articles
[吕进锋]'s Articles
Baidu academic
Similar articles in Baidu academic
[赵怀慈]'s Articles
[孙士洁]'s Articles
[吕进锋]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[赵怀慈]'s Articles
[孙士洁]'s Articles
[吕进锋]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: CN201610010171.1.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.