SIA OpenIR  > 数字工厂研究室
基于自适应遗忘因子极限学习机的高炉煤气预测
其他题名Online Prediction Method for Generation and Consumption of Blast Furnace Gas Based on Adaptive Forgetting Factor Extreme Learning Machine
孙雪莹; 胡静涛; 王卓; 张吉龙
作者部门数字工厂研究室
关键词高炉煤气 在线预测 极限学习机 遗忘因子
发表期刊计算机测量与控制
ISSN1671-4598
2017
卷号25期号:7页码:235-238
产权排序1
资助机构中国科学院重点部署项目(KGZD-EW-302) ; 中国科学院科技服务网络计划(KTJ-SW-STS-159) ; 辽宁省科学技术计划项目(2015020140)
摘要高炉煤气是钢铁企业重要的二次能源,其产生量和消耗量的实时准确预测对高炉煤气系统的平衡调度具有重要作用;但由于高炉煤气系统工况多变、产消量数据波动较大,给高炉煤气产消量的准确预测带来了很大的挑战;为此,通过对煤气产消量数据特征的深入分析,提出了一种基于自适应遗忘因子极限学习机(AF-ELM)的在线预测算法;在序贯极限学习机的基础上,引入遗忘因子逐步遗忘旧样本,通过预测误差反馈机制,自适应的调节遗忘因子,从而提高预测方法对系统工况的动态变化的适应能力,提高预测精度;将该算法应用于钢铁企业的高炉煤气产消量在线预测,实验结果表明与序贯极限学习机相比,该预测方法在系统工况变化的情况下能保持较高的预测精度,更适合于高炉煤气产消量的在线预测。
其他摘要Blast furnace gas is an important byproduct in iron and steel plants, and prediction of its generation and consumption has a great effect on balance and scheduling of gas system. However, the accurate prediction poses a significant challenge because of the unstable conditions of the blast furnace gas system and the fluctuation of data. To solve this problem, an online prediction method based on adaptive forgetting factor extreme learning machine ( AF-ELM ) is proposed. Dynamic adaptability of online sequential extreme learning machine is improved by introducing forgetting factor to gradually forget of the old samples. And the forgetting factor is adaptively updated by prediction error, which improves the prediction accuracy. The case study on the online prediction in iron and steel plants shows that compared with on - line sequential extreme learning machine, the proposed method achieve higher prediction accuracy in changing conditions, and more suitable for online prediction of generation and consumption of blast furnace gas
语种中文
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/20967
专题数字工厂研究室
通讯作者孙雪莹
作者单位1.中科院沈阳自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
孙雪莹,胡静涛,王卓,等. 基于自适应遗忘因子极限学习机的高炉煤气预测[J]. 计算机测量与控制,2017,25(7):235-238.
APA 孙雪莹,胡静涛,王卓,&张吉龙.(2017).基于自适应遗忘因子极限学习机的高炉煤气预测.计算机测量与控制,25(7),235-238.
MLA 孙雪莹,et al."基于自适应遗忘因子极限学习机的高炉煤气预测".计算机测量与控制 25.7(2017):235-238.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于自适应遗忘因子极限学习机的高炉煤气预(542KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[孙雪莹]的文章
[胡静涛]的文章
[王卓]的文章
百度学术
百度学术中相似的文章
[孙雪莹]的文章
[胡静涛]的文章
[王卓]的文章
必应学术
必应学术中相似的文章
[孙雪莹]的文章
[胡静涛]的文章
[王卓]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于自适应遗忘因子极限学习机的高炉煤气预测.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。