SIA OpenIR  > 工业控制网络与系统研究室
基于局部权重角度离群算法的球磨机故障诊断
Alternative TitleFault Diagnosis of Ball Mill Based on LW-FastVOA Algorithm
曲星宇; 曾鹏; 李俊鹏
Department工业控制网络与系统研究室
Source Publication信息与控制
ISSN1002-0411
2017
Volume46Issue:4Pages:489-494
Indexed ByCSCD
CSCD IDCSCD:6065034
Contribution Rank1
Funding Organization国家863计划资助项目(2011AA040103) ; 沈阳市科技局科技重大攻关(创新专项)基金资助项目(F15-007-2-00)
Keyword故障诊断 角度离群算法 Lw-fastvoa算法 随机超平面 Ams草图
Abstract矿用球磨机故障诊断是典型的复杂工业过程多维数据挖掘问题,难点在于多维数据挖掘准确度低且算法时间复杂度高,为此提出基于局部权重角度离群算法(LW-FastVOA)的数据挖掘方法。首先采用角度离群算法(ABOD)在多维空间中衡量数据点的离群度,并针对ABOD算法时间复杂度算法较高问题,采用FastVOA算法将数据集正交投影于随机超平面上,利用AMS草图推导出各点的方差,归纳将其投影到随机超平面上作为频矩参数,算法的时间复杂度降低.最后提出LW-FastVOA算法增加数据点的局部权重,降低多聚簇间离群点遗漏率,从而提高了算法精度.仿真实验结果表明,所提出的LW-FastVOA算法提高了精确率与召回率,验证了算法的有效性和可行性。
Other AbstractFault diagnosis of a ball mill is a typical multi-dimensional data mining problem in complex industrial processes. The difficulty of this problem lies in the low accuracy and high time complexity of multi-dimensional data mining. We propose a FastVOA with local weight (LW-FastVOA) to solve the problem. First, we apply the angle-based outlier detection (ABOD) to measure the outlier factor. Then, we use the FastVOA algorithm to reduce the time complexity of ABOD. The algorithm projects the dataset on random hyperplanes orthogonally and then derives the variance with AMS sketches. The frequency moments of the points are approximated by summarizing and projecting on the random hyperplanes. Finally, we propose the LW-FastVOA algorithm to add the local weight of the data points and reduce the omission rate of outliers among clusters to improve the accuracy. Simulation results show that the LW-FastVOA algorithm improves the precision rate and recall rate in fault diagnosis, thereby verifying the effectiveness and feasibility of the algorithm.
Language中文
Citation statistics
Cited Times:2[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/20973
Collection工业控制网络与系统研究室
Corresponding Author曲星宇
Affiliation1.中国科学院沈阳自动化研究所工业信息学重点实验室
2.中国科学院大学
3.北方重工集团有限公司
Recommended Citation
GB/T 7714
曲星宇,曾鹏,李俊鹏. 基于局部权重角度离群算法的球磨机故障诊断[J]. 信息与控制,2017,46(4):489-494.
APA 曲星宇,曾鹏,&李俊鹏.(2017).基于局部权重角度离群算法的球磨机故障诊断.信息与控制,46(4),489-494.
MLA 曲星宇,et al."基于局部权重角度离群算法的球磨机故障诊断".信息与控制 46.4(2017):489-494.
Files in This Item:
File Name/Size DocType Version Access License
基于局部权重角度离群算法的球磨机故障诊断(1201KB)期刊论文作者接受稿开放获取ODC PDDLView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[曲星宇]'s Articles
[曾鹏]'s Articles
[李俊鹏]'s Articles
Baidu academic
Similar articles in Baidu academic
[曲星宇]'s Articles
[曾鹏]'s Articles
[李俊鹏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[曲星宇]'s Articles
[曾鹏]'s Articles
[李俊鹏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于局部权重角度离群算法的球磨机故障诊断.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.