SIA OpenIR  > 机器人学研究室
Consistent multi-layer subtask tracker via hyper-graph regularization
Fan BJ(范保杰); Cong Y(丛杨)
作者部门机器人学研究室
关键词Multi-layer Subtask Learning Intrinsic Geometrical Structure Graph Regularization Normalized Collaborate Metric Object Tracking
发表期刊Pattern Recognition
ISSN0031-3203
2017
卷号67页码:299-312
收录类别SCI ; EI
EI收录号20171303494215
WOS记录号WOS:000399520700025
产权排序2
资助机构China Postdoctoral Science Foundation (No. 2015M571785, 2016T90484), NSFC (U1613214, 61673254, 61533015), Jiangsu Postdoctoral Science Foundation (No. 1402085C), State Key Laboratory of Robotics Open Project and the Foundation for the Talent of Nanjing University of Tele. and Com. (No. NY215148), project supported by the open fund of Key Laboratoryof Measurement and Control of Complex Systems of Engineering,Ministry of Education (No. MCCSE2015A05).
摘要Most multi-task learning based trackers adopt similar task definition by assuming that all tasks share a common feature set, which can't cover the real situation well. In this paper, we define the subtasks from the novel perspective, and develop a structured and consistent multi-layer multi-subtask tracker with graph regularization. The tracking task is completed by the collaboration of multi-layer subtasks. Different subtasks correspond to the tracking of different parts in the target area. The correspondences of the subtasks among the adjacent frames are consistent and smooth. The proposed model introduces hyper-graph regularizer to preserve the global and local intrinsic geometrical structures among and inside target candidates or trained samples, and decomposes the representative matrix of the subtasks into two components: low-rank property captures the subtask relationship, group-sparse property identifies the outlier subtasks. Moreover, a collaborate metric scheme is developed to find the best candidate, by concerning both discrimination reliability and representation accuracy. We show that the proposed multi-layer multi-subtask learning based tracker is a general model, which accommodates most existing multi-task trackers with the respective merits. Encouraging experimental results on a large set of public video sequences justify the effectiveness and robustness of the proposed tracker, and achieve comparable performance against many state-of-the-art methods.
语种英语
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/21226
专题机器人学研究室
通讯作者Fan BJ(范保杰)
作者单位1.Automation College, Nanjing University of Posts and Telecommunications, China
2.State Key Laboratory of Robotics, Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Fan BJ,Cong Y. Consistent multi-layer subtask tracker via hyper-graph regularization[J]. Pattern Recognition,2017,67:299-312.
APA Fan BJ,&Cong Y.(2017).Consistent multi-layer subtask tracker via hyper-graph regularization.Pattern Recognition,67,299-312.
MLA Fan BJ,et al."Consistent multi-layer subtask tracker via hyper-graph regularization".Pattern Recognition 67(2017):299-312.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Consistent multi-lay(2648KB)期刊论文作者接受稿开放获取ODC PDDL浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan BJ(范保杰)]的文章
[Cong Y(丛杨)]的文章
百度学术
百度学术中相似的文章
[Fan BJ(范保杰)]的文章
[Cong Y(丛杨)]的文章
必应学术
必应学术中相似的文章
[Fan BJ(范保杰)]的文章
[Cong Y(丛杨)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Consistent multi-layer subtask tracker via hyper-graph regularization.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。