SIA OpenIR  > 数字工厂研究室
Monitoring based on MIC-PCA and SVDD for industrial process
Wang ZW(王中伟); Li S(李帅); Song H(宋宏); Zhou XF(周晓锋)
作者部门数字工厂研究室
会议名称2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017
会议日期March 25-26, 2017
会议地点Chongqing, China
会议主办者Chongqing Geeks Education Technology Co., Ltd; Chongqing Global Union Academy of Science and Technology; Global Union Academy of Science and Technology; IEEE Beijing Section
会议录名称Proceedings of 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2017
出版者IEEE
出版地New York
2017
页码1210-1214
收录类别EI ; CPCI(ISTP)
EI收录号20174704442009
WOS记录号WOS:000427137300243
产权排序1
ISBN号978-1-4673-8977-8
关键词Principal Component Analysis Support Vector Data Description Maximal Information Coefficient Process Monitoring Industrial Process
摘要Complex industrial processes are often non-linear and non-Gaussian, while the traditional principal component analysis (PCA) method assumes that the data are Gaussian and linear. In this paper, a novel process monitoring method based on maximum information coefficient-PCA (MIC-PCA) and support vector data description (SVDD) is proposed. First, the covariance matrix is replaced by the MIC matrix which can measure the non-linear correlation between the variables. Then the SVDD models are built in the principal component subspace (PCS) and the residual subspace (RS) to improve the monitoring of non-linear and non-Gaussian processes. Finally, the feasibility and effectiveness of the proposed method are validated by high-pressure and low-density polyethylene (LDPE) industrial process.
语种英语
引用统计
文献类型会议论文
条目标识符http://ir.sia.cn/handle/173321/21245
专题数字工厂研究室
通讯作者Wang ZW(王中伟)
作者单位1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2.Key Laboratory of Network Control System, Chinese Academy of Sciences, Shenyang, China
3.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Wang ZW,Li S,Song H,et al. Monitoring based on MIC-PCA and SVDD for industrial process[C]//Chongqing Geeks Education Technology Co., Ltd; Chongqing Global Union Academy of Science and Technology; Global Union Academy of Science and Technology; IEEE Beijing Section. New York:IEEE,2017:1210-1214.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Monitoring based on (891KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang ZW(王中伟)]的文章
[Li S(李帅)]的文章
[Song H(宋宏)]的文章
百度学术
百度学术中相似的文章
[Wang ZW(王中伟)]的文章
[Li S(李帅)]的文章
[Song H(宋宏)]的文章
必应学术
必应学术中相似的文章
[Wang ZW(王中伟)]的文章
[Li S(李帅)]的文章
[Song H(宋宏)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Monitoring based on MIC-PCA and SVDD for industrial process.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。