SIA OpenIR  > 海洋信息技术装备中心
Research on AUV Obstacle Avoidance Based on BP Neural Network
Dong LY(董凌艳); Xu HL(徐红丽)
作者部门海洋信息技术装备中心
会议名称2017 The 2nd International Conference on Robotics, Control and Automation (ICRCA 2017)
会议日期September 15-18, 2017
会议地点Kitakyushu, Japan
会议录名称2017 The 2nd International Conference on Robotics, Control and Automation (ICRCA 2017)
出版者ACM
出版地New York
2017
页码26-29
收录类别EI ; CPCI(ISTP)
EI收录号20175204569586
WOS记录号WOS:000442640500006
产权排序1
ISBN号978-1-4503-5327-4
关键词Obstacle Avoidance Auv Bp Neural Network.
摘要

Autonomous underwater vehicle should have real-time obstacle avoidance ability of self-protection in autonomous operation in unknown environment. A three-dimensional real-time obstacle avoidance method is proposed for under-actuated AUV with the distance sensor as obstacle avoidance sensor. The output information of the distance sensor is converted into a dangerous degree which as the input of BP neural network. The output of BP neural network is the heading or the depth of AUV which is to be adjusted. The effectiveness of obstacle avoidance method based on BP neural network is verified by MATLAB simulation.

语种英语
引用统计
文献类型会议论文
条目标识符http://ir.sia.cn/handle/173321/21295
专题海洋信息技术装备中心
通讯作者Dong LY(董凌艳)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, China
2.University of Chinese Academy of Science, Beijing, China
3.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, China
推荐引用方式
GB/T 7714
Dong LY,Xu HL. Research on AUV Obstacle Avoidance Based on BP Neural Network[C]. New York:ACM,2017:26-29.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Research on AUV Obst(418KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dong LY(董凌艳)]的文章
[Xu HL(徐红丽)]的文章
百度学术
百度学术中相似的文章
[Dong LY(董凌艳)]的文章
[Xu HL(徐红丽)]的文章
必应学术
必应学术中相似的文章
[Dong LY(董凌艳)]的文章
[Xu HL(徐红丽)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Research on AUV Obstacle Avoidance Based on BP Neural Network.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。