SIA OpenIR  > 工业控制网络与系统研究室
Wearable Continuous Body Temperature Measurement Using Multiple Artificial Neural Networks
Song CH(宋纯贺); Zeng P(曾鹏); Wang ZF(王忠锋); Zhao H(赵海); Yu HB(于海斌)
作者部门工业控制网络与系统研究室
关键词Wearable Computing Continue Body Temperature Measurement Non-invasive Artificial Neural Network
发表期刊IEEE Transactions on Industrial Informatics
ISSN1551-3203
2018
卷号14期号:10页码:4395-4406
收录类别SCI ; EI
EI收录号20180704785283
WOS记录号WOS:000446673500011
产权排序1
资助机构National Natural Science Foundation of China ; Hundred Talents Program of Shenyang Institute of Automation, Chinese Academy of Sciences
摘要

Continuous body temperature measurement (CBTM) is of great significance for human health state monitoring. To avoid interfering with users daily activities, CBTM is usually achieved using wearable non-invasive thermometers. Current wearable non-invasive thermometers employ steady-state models used in non-wearable thermometers, as a result, the reaction time is long and the measurement can be disturbed by users activities. However, there is no work to solve these issues. In this paper, first, differences between wearable and non-wearable temperature measurement are analyzed. Second, the relationship among the human body temperature, the skin temperature and the device temperature is modeled based on Artificial Neural Networks (ANNs). Third, this paper proposes a novel multiple ANNs based wearable CBTM method. Experiments show that, the reaction time of the proposed method is about 1/10 of that of other popular wearable non-invasive CBTM methods, meanwhile the accuracy and the robustness are improved.

语种英语
WOS类目Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial
关键词[WOS]DISEASE
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
资助项目National Natural Science Foundation of China[61533015] ; National Natural Science Foundation of China[61773368] ; National Natural Science Foundation of China[61773366] ; Hundred Talents Program of Shenyang Institute of Automation, Chinese Academy of Sciences[Y6F8130801]
引用统计
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/21525
专题工业控制网络与系统研究室
通讯作者Song CH(宋纯贺)
作者单位1.Laboratory of Industrial Control Network and System, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning China 110016
2.Northeastern University, 12434 Shenyang China 110004
推荐引用方式
GB/T 7714
Song CH,Zeng P,Wang ZF,et al. Wearable Continuous Body Temperature Measurement Using Multiple Artificial Neural Networks[J]. IEEE Transactions on Industrial Informatics,2018,14(10):4395-4406.
APA Song CH,Zeng P,Wang ZF,Zhao H,&Yu HB.(2018).Wearable Continuous Body Temperature Measurement Using Multiple Artificial Neural Networks.IEEE Transactions on Industrial Informatics,14(10),4395-4406.
MLA Song CH,et al."Wearable Continuous Body Temperature Measurement Using Multiple Artificial Neural Networks".IEEE Transactions on Industrial Informatics 14.10(2018):4395-4406.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Wearable Continuous (1414KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song CH(宋纯贺)]的文章
[Zeng P(曾鹏)]的文章
[Wang ZF(王忠锋)]的文章
百度学术
百度学术中相似的文章
[Song CH(宋纯贺)]的文章
[Zeng P(曾鹏)]的文章
[Wang ZF(王忠锋)]的文章
必应学术
必应学术中相似的文章
[Song CH(宋纯贺)]的文章
[Zeng P(曾鹏)]的文章
[Wang ZF(王忠锋)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Wearable Continuous Body Temperature Measurement Using Multiple Artificial Neural Networks.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。