SIA OpenIR  > 装备制造技术研究室
空间转位机械臂全物理惯量承载特性研究
其他题名Research on the Inertia Characteristics of Space Transfer Manipulator by the Full Physical method
张伟1,2
导师徐志刚
分类号TP241
关键词空间转位机械臂 转动惯量 全物理实验 地面微重力模拟 动力学建模
索取号TP241/Z35/2018
页数87页
学位专业机械制造及其自动化
学位名称硕士
2018-05-17
学位授予单位中国科学院沈阳自动化研究所
学位授予地点沈阳
作者部门装备制造技术研究室
摘要

由物理知识可知空间站在太空中只受到微小的重力,但是由于其质量和体积巨大,不小于22000kg,导致它在转动的过程中产生很大的转动惯量,不小于3.2×〖10〗^5Kg?m^2,由于航天产品的特殊性,需要在地面上对空间转位机械臂进行充分的实验以确保其能胜任太空中的转位任务,但是在地面上模拟出实验舱转动时所产生的超大转动惯量同时还要模拟出微重力环境相对比较困难,为此针对空间转位机械臂地面实验提出了一种全物理的实验方法。全物理实验方法中针对超大转动惯量加载设计出了惯量模拟机构来模拟空间机械臂转位时所受转动惯量,对于微重力环境采用气浮的方法为全物理装置提供微重力环境。模拟实验舱的惯量模拟机构,它由12块质量块通过螺栓连接叠加装在安装板上最终构成重达7000kg的惯量模拟机构。分别采用牛顿-欧拉方程和拉格朗日方程对全物理实验装置进行动力学建模得到动力学方程,并带入相关数据,得到肩关节和腕关节处的转动惯量,其中肩关节处的转动惯量是一个恒值为7.6487×〖10〗^5Kg?m^2,腕关节处的转动惯量是关于空间机械臂转位角度的函数,最小值为5.0526×〖10〗^5Kg?m^2均满足实验要求的3.2×〖10〗^5Kg?m^2。对于地面微重力环境的模拟,通过对各种地面微重力方法的比较选择气浮法作为微重力的提供方法,针对转动惯量模拟机构、空间转位机械臂和中间连接梁分别设计了不同的气浮机构,对于重达7000kg的惯量模拟机构设计了外形尺寸为1000mm×1000mm×150mm的气浮板为其提供微重力,对于空间转位机械臂和中间连接梁设计了基于气足的反重力机构为其提供微重力环境。通过试验表明两者均能够非常有效的平衡掉惯量模拟机构和连接梁的地面重力。全物理实验装置的工作原理,在试验时气浮平台为整个实验装置提供一个模拟太空重力的地面微重力环境,空间机械臂按照在太空中转位的轨迹进行转动,末端模拟实验舱的惯量模拟机构通过中间梁的连接,在微重力的环境下跟随空间转位机械臂进行转动,转动的过程中就模拟产生了转位机械臂在太空中带动实验舱转动时所受的转动惯量,全物理方法在整个实验过程中动力源均来自于空间转位机械臂的肩关节和腕关节处的驱动机构,并没有引进其他的动力源,所以全物理方法模拟出的数据在精度和可靠性上都比较高为全真模拟。通过对全物理实验装置进行动力学建模,得到空间转位机械臂腕关节和基座连接处、腕关节处、肩关节处、肩关节和中间连接梁处以及惯量模拟机构和中间连接梁处的力和力矩,并把得到相关数据中的最大值导入到静力学分析软件中对全物理实验装置进行结构分析,分析表明太空转位机械臂的形变量仅为0.13mm、中间连接梁的形变为0.004mm、支撑轨道的形变为0.012mm,移动小车的轮毂形变为0.0116mm,结果表面空间转位机械臂能够满足设计要求,全物理实验装置也能够胜任对空间转为机械臂所受转动惯量地面加载工作,即全物理实验方法也具有有效性。

其他摘要

It can be seen from the physical knowledge that the space station is only subjected to small gravity in space, but because of its mass and volume, it is about 22 tons, resulting in a large moment of inertia in the process of rotation. it produces a large moment of inertia in the process of rotation, not less than 3.2×〖10〗^5Kg?m^2 .It is necessary to make adequate experiments on the space rotation manipulator on the ground to ensure the particularity of space products. It can be competent for the transposition task in space, but it is relatively difficult to simulate the micro gravity environment in the simulation of the rotation of the experimental cabin on the ground. Therefore, a full physical experiment method is proposed for the ground experiment of the space transposition manipulator. The inertia simulation mechanism is designed to simulate the rotation of the space manipulator in the full physics experiment method, and the micro gravity environment is used to provide the microgravity environment for the whole physical device. The inertia simulation mechanism of the simulated experiment cabin is made up of 12 mass blocks by bolts and is stacked on the mounting plate, and finally constitutes inertia simulation mechanism weighing 7000kg. Using Newton Euler equation and Lagrange equation, the dynamic modeling of the whole physical device is obtained, and the rotational inertia at the shoulder joint and wrist joint is obtained. The moment of inertia at the shoulder joint is a constant value 7.6487×〖10〗^5Kg?m^2 , and the moment of inertia at the wrist joint is about the transposition of the space manipulator. The function of angle is minimum 5.0526×〖10〗^5Kg?m^2, which satisfies the requirement of experiment 3.2×〖10〗^5Kg?m^2. For the simulation of ground microgravity environment, different air floatation mechanisms are designed for the rotational inertia simulation mechanism, the space transposition manipulator and the intermediate connection through the comparison selection of air floatation method for various ground microgravity methods. The length of the side length is 1000mm×1000mm×150mm designed for the inertia simulation mechanism weighing 7000kg. The air floatation plate provides microgravity for it, and the air foot mechanism is designed for the space transposition manipulator and the intermediate connecting beam to provide microgravity environment. Experiments show that both of them can balance the gravity of mass and connecting beam very effectively. The air floatation platform provides a ground gravity environment that simulates the space gravity for the whole test device. The space manipulator rotates according to the trajectory of the transposition in space. The inertia simulation mechanism of the terminal simulated experimental cabin is connected by the middle beam and rotates with the space transposition manipulator under the environment of microgravity. In the process of rotation, the simulation produces the moment of inertia for the rotating manipulator to drive the experimental cabin in space. In the whole process of the whole experiment, the power source is derived from the shoulder and wrist joints of the arm, and no other power sources are introduced. So the data simulated by the whole physical method are in the process. Precision and reliability are high for simulation. Through the dynamic modeling of the whole physical experiment device, the force and torque at each joint of the manipulator are obtained, and the related data are introduced into the static analysis software for structural analysis. The shape variables of the space transposition manipulator are only 0.13mm. The results show that the space transposition manipulator can meet the design requirements, and it is also proved that the space transposition manipulator can meet the design requirements. The whole physical experiment method is also effective.

语种中文
产权排序1
文献类型学位论文
条目标识符http://ir.sia.cn/handle/173321/21781
专题装备制造技术研究室
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
张伟. 空间转位机械臂全物理惯量承载特性研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
空间转位机械臂全物理惯量承载特性研究.p(3313KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张伟]的文章
百度学术
百度学术中相似的文章
[张伟]的文章
必应学术
必应学术中相似的文章
[张伟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。