SIA OpenIR  > 海洋机器人卓越创新中心
海洋中尺度涡观测中水下滑翔机控制策略研究
其他题名Research on Control Strategy of Underwater Gliders for Ocean Mesoscale Eddies Observation
赵文涛1,2
导师张艾群
分类号TP242
关键词水下滑翔机 中尺度涡 海洋动态特征观测 协同控制
索取号TP242/Z47/2018
页数129页
学位专业机械电子工程
学位名称博士
2018-05-19
学位授予单位中国科学院沈阳自动化研究所
学位授予地点沈阳
作者部门海洋机器人卓越创新中心
摘要

水下滑翔机对中尺度涡的跟踪观测需要对基于卫星数据的涡旋识别、预测和跟踪方法进行研究,对水下滑翔机航向控制以及平台之间的协同控制策略进行设计。本文在分析已有基于卫星数据对中尺度涡识别和跟踪技术的基础上,结合水下滑翔机的运动特点和控制流程上的需要,设计适用于水下滑翔机的中尺度涡跟踪观测系统框架。并对其中涉及到的滑翔机路径动态规划、航向控制方法进行研究。同时,制定了一阶可微路径下滑翔机的协同控制策略方法,此系统框架及相应的控制方法能够实现对其他形状不规则的海洋动态特征进行跟踪观测。本文作为海洋机器人水下环境自主观测理论与技术研究的部分内容,依托于国家自然科学基金重点项目“海洋机器人水下环境自主观测理论与技术”。对水下滑翔机自主跟踪观测海洋动态特征任务中,涉及到的以下内容进行了研究:(1)基于卫星数据对中尺度涡进行识别、预测和跟踪。水下滑翔机对中尺度涡进行跟踪之前需要对中尺度涡进行宏观的观测和了解,使用卫星数据进行相关的宏观观测是目前最为普遍的方式。针对中尺度涡旋的特征,结合水下滑翔机动态跟踪观测的需求,提出了使用聚类的方法对卫星数据中的涡旋区域进行识别的方法;水下滑翔机动态跟踪观测中尺度涡过程,需要对中尺度涡进行位置预测,本文对静止预测、Kalman方式的预测和核回归方式的预测进行了比较;基于卫星数据的涡旋跟踪中,利用涡旋的边界曲线制定了复合参数判据,同时提出使用双向匹配的方法进行涡旋汇合、分离过程的监测。(2)设计了滑翔机进行中尺度涡实时动态跟踪观测的系统框架,并针对水下滑翔机执行中尺度涡剖面观测任务设计了相应的航向控制策略。结合水下滑翔机的特点和涡旋跟踪观测的目标,设计了各个模块的功能及其信号流图,为多水下滑翔机进行跟踪观测提供基础。利用该系统对中国南海的某个中尺度涡进行了海上跟踪观测实验,通过对数据的分析,滑翔机成功完成了对涡旋的跟踪观测。(3)对圆形观测路径下多水下滑翔机协同控制策略进行了研究。通过分析圆形观测路径的特点,制定了极坐标系下队形中水下滑翔机的有符号距离、极角差和平均极角等参数的含义和计算方法。综合各个参数的影响,设计了能量函数,并根据其导函数推导出了滑翔机的协同控制策略。(4)针对形状不规则的海洋特征及复杂观测路径下多水下滑翔机协同控制的需求,分析复杂观测路径的特点,在Frenet坐标系内对平台位置、有符号距离和相位差进行建模。依照参数建模结果重新设计了能量函数,并给出了控制策略。针对椭圆、矩形和之字形路径进行了相应的仿真,验证了方法的有效性。

其他摘要

Using underwater gliders to track the mesoscale eddies need to study the mesoscale eddies’ recognition, prediction and tracking method based on satellite data, also the heading angle control and coordinate control strategy of underwater gliders need to be designed. Considering the motion characteristics and control process of underwater gliders, we designed a frame for underwater gliders to track mesoscale eddies based on analyzing the existing mesoscale eddies’ recognition and tracking methods. The dynamic path planning, heading angle control, and coordinate control method for circle path are studies in this paper. At last, the coordinate control method for other complex paths, which can be used for tracking other oceanographic phenomena is formulated. According to the needs of natural science funds Project “Underwater Environment Autonomous Observation Theory and Technology for Marine Robot (61233013)”, this dissertation conducts a deep research on control strategy of the underwater gliders for autonomous oceanographic phenomena observation. The main contents of this dissertation are as follows: (1) Recognition, prediction and tracking based on satellite data. To autonomous sampling mesoscale eddies by gliders, we need observe eddies macroscopically. Then the scheme of underwater gliders can be formulated. The method to automatically observe eddies base on satellite data is used broadly. Taking features of mesoscale eddies and the demand of tracking eddy with gliders into account, clustering method is used to identify the eddy region in satellite snapshot. The position of eddies need to be predicted when using gliders to track an eddy so gliders. This paper compared the result of still prediction, Kalman prediction and kernel regression prediction. We design a composite parameters criterion based on the boundary of eddy region to use the satellite data to tracking the eddy region. And a bilaterial matching method is devised to detect the merging and splitting process of eddies. (2) To complete a profile observation task in a mesoscale eddy region with underwater gliders being the platform, a system framework and the corresponding heading angle control strategy is designed. The function of each module in this system framework is designed based on the characteristics of gliders and the eddy tracking objective. This framework provide basis for the observation task of eddy region by gliders. We use this system to track an eddy in South China Sea and the data from gliders show that it tracks this eddy successfully. (3) Studying the cooperative control method for underwater gliders used to sample the circular observation path in eddy region. By analyzing the characteristics of circular path, the polar coordinate system is used for modeling and calculating the formation parameters of underwater gliders, that is signed distance, difference of polar angle and average polar angle. An energy equation is constructed according to the synthetic effect of formation parameters. Then the corresponding heading angle control law is formulated by minimizing the value of differential function of energy function. (4) According to the demand of gliders’ cooperative control when tracking the out-of-shape oceanographic phenomena with complex observation path, we use the Frenet coordinate system to model the formation parameters of underwater gliders, that is positions of platforms, signed distance, and phase difference. The energy function and control strategy based on new model is redesigned. The method is used to track ellipse, rectangle and zigzag path in a simulation experiment and the effectiveness of it is verified.

语种中文
产权排序1
文献类型学位论文
条目标识符http://ir.sia.cn/handle/173321/21786
专题海洋机器人卓越创新中心
作者单位1.中国科学院沈阳自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
赵文涛. 海洋中尺度涡观测中水下滑翔机控制策略研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
海洋中尺度涡观测中水下滑翔机控制策略研究(3913KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[赵文涛]的文章
百度学术
百度学术中相似的文章
[赵文涛]的文章
必应学术
必应学术中相似的文章
[赵文涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。