SIA OpenIR  > 光电信息技术研究室
基于协方差流形的异常驾驶行为识别方法
其他题名Abnormal driving behavior detection based on covariance manifold
李此君1,2,3,4; 刘云鹏1,2,3,4
作者部门光电信息技术研究室
关键词异常驾驶行为识别 协方差描述子 黎曼流形 多类LogitBoost分类器
发表期刊太赫兹科学与电子信息学报
ISSN2095-4980
2018
卷号16期号:2页码:323-329
产权排序1
摘要研究一种高效的异常驾驶行为正确识别分类的识别方法,对预防由于异常驾驶行为导致的交通事故具有重要意义。提出了一种新的基于协方差流形的异常驾驶行为识别方法。首先提取图像的纹理、颜色和梯度方向特征,以克服基于单一特征识别驾驶行为的不足;并利用协方差流形进行多特征融合,以消除特征冗余以及不同特征数值悬殊对图像识别的影响;最后使用多类LogitBoost分类器进行分类识别。针对相同检测目标的正确识别率可达98%以上,对不同检测目标的正确识别率可达70%以上。实验结果表明该方法有效提高了驾驶行为识别的效果。
其他摘要Abnormal driving behavior recognition is to find a method to recognize abnormal driving behaviors correctly by analyzing the driver’s activities using image processing and pattern recognition technology. This method is composed of a structure of covariance matrices of image features, which is able to extract information from data. The proposed classification framework consists in a new multi-class boosting method, working on the manifold Sym+d of symmetric positive definite d *d (covariance) matrices. The correct recognition rate for the same target can reach 98%, and above 70% for different targets. The result shows that this method effectively improves the accuracy of abnormal driving behavior recognition.
语种中文
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/21883
专题光电信息技术研究室
通讯作者李此君
作者单位1.中国科学院沈阳自动化研究所;
2.中国科学院大学;
3.中国科学院光电信息处理重点实验室;
4.辽宁省图像理解与视觉计算重点实验室
推荐引用方式
GB/T 7714
李此君,刘云鹏. 基于协方差流形的异常驾驶行为识别方法[J]. 太赫兹科学与电子信息学报,2018,16(2):323-329.
APA 李此君,&刘云鹏.(2018).基于协方差流形的异常驾驶行为识别方法.太赫兹科学与电子信息学报,16(2),323-329.
MLA 李此君,et al."基于协方差流形的异常驾驶行为识别方法".太赫兹科学与电子信息学报 16.2(2018):323-329.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于协方差流形的异常驾驶行为识别方法.p(1202KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李此君]的文章
[刘云鹏]的文章
百度学术
百度学术中相似的文章
[李此君]的文章
[刘云鹏]的文章
必应学术
必应学术中相似的文章
[李此君]的文章
[刘云鹏]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于协方差流形的异常驾驶行为识别方法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。