SIA OpenIR  > 机器人学研究室
Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition
Wang Y(王尧)1; Peng, Jiangjun1; Zhao Q(赵谦)1; Leung, Yee2; Zhao XL(赵熙乐)3; Meng DY(孟德宇)1,4
作者部门机器人学研究室
关键词Hyperspectral Image (Hsi) Low-rank Tensor Decomposition Mixed Noise Total Variation (Tv)
发表期刊IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
ISSN1939-1404
2018
卷号11期号:4页码:1227-1243
收录类别SCI ; EI
EI收录号20180104604831
WOS记录号WOS:000429956000018
产权排序4
资助机构National Natural Science Foundation of China ; Vice-Chancellor's Discretionary Fund of the Chinese University of Hong Kong
摘要

Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, etc. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the l(1) norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regularization has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier method. Finally, extensive experiments on simulated and real-world noisy HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.

语种英语
WOS类目Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology
关键词[WOS]NUCLEAR NORM MINIMIZATION ; TOTAL VARIATION MODEL ; NOISE-REDUCTION ; MATRIX RECOVERY ; SPARSE REPRESENTATION ; CLASSIFICATION
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
资助项目National Natural Science Foundation of China[11501440] ; National Natural Science Foundation of China[61603292] ; National Natural Science Foundation of China[61673015] ; National Natural Science Foundation of China[61373114] ; National Natural Science Foundation of China[61402082] ; National Natural Science Foundation of China[61772003] ; Vice-Chancellor's Discretionary Fund of the Chinese University of Hong Kong
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/21888
专题机器人学研究室
通讯作者Zhao Q(赵谦)
作者单位1.School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China;
2.Institute of Future Cities, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR;
3.School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China;
4.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
推荐引用方式
GB/T 7714
Wang Y,Peng, Jiangjun,Zhao Q,et al. Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2018,11(4):1227-1243.
APA Wang Y,Peng, Jiangjun,Zhao Q,Leung, Yee,Zhao XL,&Meng DY.(2018).Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,11(4),1227-1243.
MLA Wang Y,et al."Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 11.4(2018):1227-1243.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hyperspectral Image (2500KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang Y(王尧)]的文章
[Peng, Jiangjun]的文章
[Zhao Q(赵谦)]的文章
百度学术
百度学术中相似的文章
[Wang Y(王尧)]的文章
[Peng, Jiangjun]的文章
[Zhao Q(赵谦)]的文章
必应学术
必应学术中相似的文章
[Wang Y(王尧)]的文章
[Peng, Jiangjun]的文章
[Zhao Q(赵谦)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。