SIA OpenIR  > 机器人学研究室
基于正交分解和EM算法的阴影检测方法
其他题名Shadow detection method based on orthogonal decomposition and EM algorithm
田建东; 屈靓琼; 王占鹏; 唐延东
所属部门机器人学研究室
专利权人中国科学院沈阳自动化研究所
专利代理人沈阳科苑专利商标代理有限公司 21002
授权国家中国
专利类型发明授权
专利状态有权
摘要

本发明涉及基于正交分解和EM算法的阴影检测方法,包括以下步骤:利用原始图像中阴影区域内外的线性模型建立线性方程组;对该线性方程组进行正交分解得到一幅彩色光照不变图像和一幅光照变化图像;对彩色光照不变图像采用K‑means算法进行分类:根据分类结果对光照变化图像采用EM算法进行高斯混合建模,提取阴影区域;最后采用形态学算子对提取的阴影区域进行优化。本发明采用简单的正交分解和EM迭代算法提取阴影区域,不需要复杂的特征算子学习过程,大大的降低了算法的时间复杂度,可直接应用到实时场合;本发明也不需要场景、目标等先验知识,具有较好的普适性。

其他摘要

The invention relates to a shadow detection method based on orthogonal decomposition and an EM algorithm. The shadow detection method includes the following steps of: establishing a system of linear equations through linear models inside and outside shadow areas in an original image; performing orthogonal decomposition on the system of linear equations to obtain a colored illumination-unchangeable image and an illumination-changeable image; classifying the colored illumination-unchangeable image through a K-means algorithm; performing Gaussian mixture model on the illumination-changeable image through the EM algorithm according to a classification result, and extracting the shadow areas; and finally performing optimization on the extracted shadow areas through a morphology operator. According to the method, the shadow areas can be extracted through the simple orthogonal decomposition and the simple EM iterative algorithm, and a complicated characteristic operator learning process can be avoided, so that the time complexity of the algorithm can be greatly reduced, and the method can be directly applied to real-time occasions; and prior knowledge such as scenes and targets is not needed, so that the method has the good universality.

PCT属性
申请日期2014-08-12
2016-03-30
授权日期2018-06-12
申请号CN201410395335.8
公开(公告)号CN105447843B
语种中文
产权排序1
文献类型专利
条目标识符http://ir.sia.cn/handle/173321/21964
专题机器人学研究室
作者单位中国科学院沈阳自动化研究所
推荐引用方式
GB/T 7714
田建东,屈靓琼,王占鹏,等. 基于正交分解和EM算法的阴影检测方法[P]. 2016-03-30.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CN201410395335.8授权.p(1465KB)专利 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[田建东]的文章
[屈靓琼]的文章
[王占鹏]的文章
百度学术
百度学术中相似的文章
[田建东]的文章
[屈靓琼]的文章
[王占鹏]的文章
必应学术
必应学术中相似的文章
[田建东]的文章
[屈靓琼]的文章
[王占鹏]的文章
相关权益政策
暂无数据
收藏/分享
文件名: CN201410395335.8授权.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。