SIA OpenIR  > 光电信息技术研究室
视频监控中的人群异常行为检测与定位
Alternative TitleAnomaly Detection and Location in Crowded Surveillance Videos
周培培1,2,3,4; 丁庆海1,5; 罗海波1,3,4; 侯幸林1,2,3,4
Department光电信息技术研究室
Source Publication光学学报
ISSN0253-2239
2018
Volume38Issue:8Pages:1-9
Indexed ByEI ; CSCD
EI Accession number20184105932735
CSCD IDCSCD:6305054
Contribution Rank1
Funding Organization中国科学院国防科技创新基金(Y6A4160401)
Keyword模式识别 人群异常检测 运动区域分割 特征提取 一类分类器 运动连续性滤波
Abstract

人群中的异常行为是一大潜在威胁,自动检测监控中的异常行为成为近年的研究热点之一。然而,由于异常的未知性与复杂性,已有的检测方法仍然存在检测率低、定位精度差的问题。为此,提出了对视频监控中的人群异常行为自动检测与定位的方法。第一,结合灰度值与光流场的分布提取运动区域。第二,对运动区域分割得到有效的运动块,从中提取表示外观和动态的两种特征,即局部HOG和局部HOF特征。第三,使用k-means方法对运动块进行聚类,对每类样本使用一类分类器进行建模。最后,加入运动连续性约束,以抑制干扰噪声。在两个复杂的异常行为数据集上的实验结果表明,提出的方法明显优于已有的检测方法,且可以满足正确率高、抗干扰能力强等实际工程需求。

Other Abstract

The anomaly in the crowd is a great potential threat, and the automatic detection of abnormal behavior for surveillance has become a hot topic in recent years. However, because the anomaly is unknown and complex, the previous detection methods still suffer from a low detection rate and poor location accuracy. To this end, a method is proposed for anomaly detection and location in the crowded surveillance videos. First, the motion regions are extracted according to the distributions of the gray-scale value and the optical flow field. Second, the effective motion blocks are obtained by segmenting the motion regions. Two features, namely the local HOG and the local HOF, are extracted from the motion blocks, representing the appearance and dynamics. Third, the motion blocks are clustered with the k-means method, and each cluster is modeled using a one-class classifiers. Finally, the motion continuity constraint is added to suppress the noisy noises. Experimental results on two complex abnormal behavior datasets show that the proposed method is obviously better than previous detection methods. It could meet the practical engineering needs such as high accuracy and strong anti-interference ability.

Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/22091
Collection光电信息技术研究室
Corresponding Author周培培
Affiliation1.中国科学院沈阳自动化研究所;
2.中国科学院大学;
3.中国科学院光电信息处理重点实验室;
4.辽宁省图像理解与视觉计算重点实验室;
5.航天恒星科技有限公司
Recommended Citation
GB/T 7714
周培培,丁庆海,罗海波,等. 视频监控中的人群异常行为检测与定位[J]. 光学学报,2018,38(8):1-9.
APA 周培培,丁庆海,罗海波,&侯幸林.(2018).视频监控中的人群异常行为检测与定位.光学学报,38(8),1-9.
MLA 周培培,et al."视频监控中的人群异常行为检测与定位".光学学报 38.8(2018):1-9.
Files in This Item: Download All
File Name/Size DocType Version Access License
视频监控中的人群异常行为检测与定位.pd(1742KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[周培培]'s Articles
[丁庆海]'s Articles
[罗海波]'s Articles
Baidu academic
Similar articles in Baidu academic
[周培培]'s Articles
[丁庆海]'s Articles
[罗海波]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[周培培]'s Articles
[丁庆海]'s Articles
[罗海波]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 视频监控中的人群异常行为检测与定位.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.