SIA OpenIR  > 其他
基于改进长效递归卷积网络的行为识别算法
Alternative TitleAction recognition based on improved long-term recurrent convolution network
王学微1,2; 徐方1,3; 贾凯1,3
Department其他
Source Publication计算机工程与设计
ISSN1000-7024
2018
Volume39Issue:7Pages:2054-2058
Contribution Rank1
Funding Organization国家科技支撑计划基金项目(2015BAF13B01)
Keyword行为识别 卷积神经网络 递归神经网络 深度学习 模式识别
Abstract为充分提取视频序列中人体行为的静态特征与时域特征,提高人体行为识别算法的准确率,结合深度卷积神经网络与递归神经网络,提出一种端到端的网络模型,分别使用多帧叠加的RGB图像与光流图像作为网络输入,将基于RGB图像的人体行为特征与基于光流图像的人体行为特征进行加权融合,作为最终的人体行为特征。实验结果表明,该算法可以有效提高行为识别准确率,在公开数据集UCF101上取得了84.68%的平均准确率,高于改进前长效递归卷积神经网络(82.34%)。
Other AbstractTo fully extract the spatial feature and time domain feature of human activity in video sequences and improve the accuracy of human action recognition algorithm, an end-to-end network combining with deep convolution neural network and recurrent neural network was presented. The stacked RGB images and the stacked optical flow images were respectively used as the network input, and the features based on the RGB images and the features based on the optical flow images were weightedly integrated as the ultimate human activity features. Experimental results show that the proposed algorithm can effectively improve the accuracy of action recognition, and obtain the average accuracy rate of 84.68%in the open dataset UCF101,which is higher than that of the long recurrent convolution network(82.34%).
Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/22298
Collection其他
Corresponding Author王学微
Affiliation1.中国科学院沈阳自动化研究所机器人国家重点实验室
2.中国科学院大学
3.沈阳新松机器人自动化股份有限公司中央研究院
Recommended Citation
GB/T 7714
王学微,徐方,贾凯. 基于改进长效递归卷积网络的行为识别算法[J]. 计算机工程与设计,2018,39(7):2054-2058.
APA 王学微,徐方,&贾凯.(2018).基于改进长效递归卷积网络的行为识别算法.计算机工程与设计,39(7),2054-2058.
MLA 王学微,et al."基于改进长效递归卷积网络的行为识别算法".计算机工程与设计 39.7(2018):2054-2058.
Files in This Item: Download All
File Name/Size DocType Version Access License
基于改进长效递归卷积网络的行为识别算法.(337KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[王学微]'s Articles
[徐方]'s Articles
[贾凯]'s Articles
Baidu academic
Similar articles in Baidu academic
[王学微]'s Articles
[徐方]'s Articles
[贾凯]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王学微]'s Articles
[徐方]'s Articles
[贾凯]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于改进长效递归卷积网络的行为识别算法.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.