SIA OpenIR  > 光电信息技术研究室
基于Grassmann流形几何深度网络的图像集识别方法
Alternative TitleGeometry deep network image-set recognition method based on Grassmann manifolds
刘天赐1,2,3; 史泽林1,3; 刘云鹏1,3; 张英迪1,2,3
Department光电信息技术研究室
Source Publication红外与激光工程
ISSN1007-2276
2018
Volume47Issue:7Pages:1-7
Indexed ByEI ; CSCD
EI Accession number20183805818138
CSCD IDCSCD:6373935
Contribution Rank1
Funding Organization中国科学院重点创新基金(Y6K4250401)
Keyword深度学习 Grassmann流形 黎曼优化 图像集识别
Abstract

近年来,深度学习以其强大的非线性计算能力在目标检测和识别任务中取得了巨大的突破。现有的深度学习网络几乎都是以数据的欧氏结构为前提,而在计算机视觉中许多数据都具有严格的流形结构,如图像集可表示为Grassmann流形。基于数据的流形几何结构来设计深度学习网络,将微分几何理论与深度学习理论相结合,提出一种基于Grassmann流形的深度图像集识别网络。同时在模型训练过程中,使用基于矩阵链式法则的反向传播算法来更新模型,并将权值的优化过程转换为Grassmann流形上的黎曼优化问题。实验结果表明:该方法不仅在结果上识别准确率得到了提高,同时在训练和测试速度上也有一个数量级的提升。

Other Abstract

In recent years, deep learning techniques have achieved great breakthrough for its powerful non -linear computations in the tasks of target recognition and detection. Existing deep networks were almost designed based on the precondition that the visual data reside on the Euclidean space. However, many data in computer vision have rigorous geometry of manifolds, i.e., image sets can be represented as Grassmann manifolds. The deep network was devised based on the non -Euclidean structure of the manifold-valued data, which combined the differential geometry and deep learning methods theoretically. Furthermore, a deep network for image-set recognition based on the Grassmann manifold was proposed. In the training process, the model was updated by the use of the backpropagation algorithm derived from the matrix chain rule. Learning of the weights can be transformed as the Riemannian optimization problem on the Grassmannian. The experimental results show that this method not only improves the accuracy of recognition, but also accelerates the training and test process in one magnitude.

Language中文
Citation statistics
Cited Times:1[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/22320
Collection光电信息技术研究室
Corresponding Author刘天赐
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
3.中国科学院光电信息处理重点实验室
Recommended Citation
GB/T 7714
刘天赐,史泽林,刘云鹏,等. 基于Grassmann流形几何深度网络的图像集识别方法[J]. 红外与激光工程,2018,47(7):1-7.
APA 刘天赐,史泽林,刘云鹏,&张英迪.(2018).基于Grassmann流形几何深度网络的图像集识别方法.红外与激光工程,47(7),1-7.
MLA 刘天赐,et al."基于Grassmann流形几何深度网络的图像集识别方法".红外与激光工程 47.7(2018):1-7.
Files in This Item: Download All
File Name/Size DocType Version Access License
基于Grassmann流形几何深度网络的(613KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘天赐]'s Articles
[史泽林]'s Articles
[刘云鹏]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘天赐]'s Articles
[史泽林]'s Articles
[刘云鹏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘天赐]'s Articles
[史泽林]'s Articles
[刘云鹏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于Grassmann流形几何深度网络的图像集识别方法.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.