SIA OpenIR  > 工业控制网络与系统研究室
基于遗传算法优化的OCSVM双轮廓模型异常检测算法
Alternative TitleAnomaly detection algorithm based on OCSVM double contour model of genetic algorithm optimization for industrial control system
闫腾飞1,2,3; 尚文利2,3,4; 赵剑明2,3,4; 乔枫1; 曾鹏2,3,4; 闫腾飞5,6,7; 尚文利6,7,8; 赵剑明6,7,8; 乔枫5; 曾鹏6,7,8
Department工业控制网络与系统研究室
Source Publication计算机应用研究
ISSN1001-3695
2019
Volume36Issue:11Pages:3361-3364
Indexed ByCSCD
CSCD IDCSCD:6616487
Contribution Rank1
Funding Organization国家自然科学基金面上项目(61773368) ; 预研基金资助项目(6140242010116Zk63001)
Keyword工业控制系统 异常检测 遗传算法 单类支持向量机 双轮廓模态
Abstract

针对Modbus工业总线协议的特殊性及工控数据样本的不均衡性,利用单类支持向量机(OCSVM)分别构建正常OCSVM模型和异常OCSVM模型,即双轮廓模态,模拟系统通信的正常模式和异常模式,实现工控系统异常检测。同时将遗传算法优化自变量降维应用于工控网络入侵检测场景,实现对输入自变量的降维压缩处理,防止OCSVM模型出现过拟合现象及分类准确率低的问题,提高异常检测的精度,缩减建模时间,并通过仿真验证了提出算法对工控网络异常检测的有效性。

Other Abstract

The Modbus industry bus protocol is special. And the network intrusion data sample of industrial control system is not balanced. So this paper used one-class support vector machine (OCSVM) to construct normal OCSVM model and abnormal OCSVM model to simulate the normal mode and abnormal mode of system communication. Then to realize the abnormal detection of industrial control system. In order to prevent the OCSVM model from overfitting and the low accuracy of classification, this paper used the genetic algorithm to the industrial control network by optimizing the dimensionality reduction of the independent variable. This method improves the accuracy of the anomaly detection and reduces the modeling time. Simulation results show that the proposed algorithm is effective for anomaly detection of industrial network.

Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/22384
Collection工业控制网络与系统研究室
Corresponding Author尚文利; 尚文利
Affiliation1.沈阳建筑大学信息与控制工程学院
2.中国科学院沈阳自动化研究所
3.中科院网络化控制系统重点实验室
4.中国科学院大学
5.沈阳建筑大学信息与控制工程学院
6.中国科学院沈阳自动化研究所
7.中科院网络化控制系统重点实验室
8.中国科学院大学
Recommended Citation
GB/T 7714
闫腾飞,尚文利,赵剑明,等. 基于遗传算法优化的OCSVM双轮廓模型异常检测算法[J]. 计算机应用研究,2019,36(11):3361-3364.
APA 闫腾飞.,尚文利.,赵剑明.,乔枫.,曾鹏.,...&曾鹏.(2019).基于遗传算法优化的OCSVM双轮廓模型异常检测算法.计算机应用研究,36(11),3361-3364.
MLA 闫腾飞,et al."基于遗传算法优化的OCSVM双轮廓模型异常检测算法".计算机应用研究 36.11(2019):3361-3364.
Files in This Item:
File Name/Size DocType Version Access License
基于遗传算法优化的OCSVM双轮廓模型异(1451KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[闫腾飞]'s Articles
[尚文利]'s Articles
[赵剑明]'s Articles
Baidu academic
Similar articles in Baidu academic
[闫腾飞]'s Articles
[尚文利]'s Articles
[赵剑明]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[闫腾飞]'s Articles
[尚文利]'s Articles
[赵剑明]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于遗传算法优化的OCSVM双轮廓模型异常检测算法.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.