SIA OpenIR  > 工业控制网络与系统研究室
一种基于遗传算法的LIBS定标定量分析方法
Alternative TitleGenetic algorithm based LIBS calibration quantitative analyzing method
孙兰香; 于海斌; 张鹏; 丛智博; 辛勇
Department工业控制网络与系统研究室
Rights Holder中国科学院沈阳自动化研究所
Patent Agent沈阳科苑专利商标代理有限公司 21002
Country中国
Subtype发明授权
Status有权
Abstract本发明涉及一种基于遗传算法的LIBS定标定量分析方法,具体步骤为:1)获得LIBS光谱数据;2)获取待测元素特征光谱;3)参数编码,形成遗传算法初始种群;4)计算种群中各个个体适应度;5)按选择、交叉和变异概率形成新种群;6)重复4)、5)至满足结束条件,输出最优谱线(谱线对)位置;7)根据最优谱线(谱线对)进行定标(内定标)定量分析。以本方法得到的最优谱线(谱线对)作为分析线(分析线和参考线),可以实现对待测元素浓度较为准确的定量分析。其优点在于无需人工选择分析线(参考线),可以准确的找到高判定系数(R2)、低检出限(LOD)与低相对标准差(RSD)的元素谱线(谱线对)作为分析线(分析线和参考线)。
Other AbstractThe method involves determining LIBS data length for generating encoding bit selection lines. Initial population of genetic algorithm is formed. A population optimal spectrum line is searched corresponding to a subject weight. Fresh population is formed form original population by selecting the initial population. Ending condition is satisfied based on the genetic algorithm when algorithm ending process is performed. Optimal spectrum line position is determined. Optimal spectrum scaling element concentration quantitative analyzing process is performed.
Application Date2015-05-19
2017-01-04
Date Available2018-08-24
Application NumberCN201510259910.6
Open (Notice) NumberCN106290263B
Language中文
Contribution Rank1
Document Type专利
Identifierhttp://ir.sia.cn/handle/173321/22404
Collection工业控制网络与系统研究室
Affiliation中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
孙兰香,于海斌,张鹏,等. 一种基于遗传算法的LIBS定标定量分析方法[P]. 2017-01-04.
Files in This Item: Download All
File Name/Size DocType Version Access License
CN201510259910.6授权.p(569KB)专利 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[孙兰香]'s Articles
[于海斌]'s Articles
[张鹏]'s Articles
Baidu academic
Similar articles in Baidu academic
[孙兰香]'s Articles
[于海斌]'s Articles
[张鹏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孙兰香]'s Articles
[于海斌]'s Articles
[张鹏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: CN201510259910.6授权.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.