SIA OpenIR  > 水下机器人研究室
一种基于高斯过程回归的AUV自适应采样方法
Alternative TitleAn AUV Adaptive Sampling Method Based on Gaussian Process Regression
阎述学1,2; 李一平1; 封锡盛1
Department水下机器人研究室
Source Publication机器人
ISSN1002-0446
2019
Volume41Issue:2Pages:232-241
Indexed ByEI ; CSCD
EI Accession number20192206992147
CSCD IDCSCD:6463080
Contribution Rank1
Funding Organization国家重点研发计划(2017YFC0305901) ; 国家自然科学基金(91648204)
Keyword高斯过程回归 自主水下机器人 自适应采样 在线路径规划 热点区域观测
Abstract针对区域海洋特征环境快速观测的需求,提出了一种基于高斯过程回归的小型自主水下机器人(AUV)自适应采样方法.首先,通过比较高斯过程回归(GPR)中使用不同的回归推理方法的估计准确度和计算效率,确定AUV的合适采样间隔时间;在此基础上,根据AUV实时观测的数据进行GPR分析,预测未观测区域环境数据,并通过计算预测区域梯度极值和预测不确定度引导AUV进行在线路径规划;最后使用该方法,对具有不同特征分布的区域环境观测过程进行仿真.结果显示,本方法与常规方法相比,能够更高效地获得观测区域的低误差特征分布估计,更快地获得观测区域热点区特征,更好地适应观测区域特征分布不同的情况.
Other AbstractFor the rapid observation problem in coastal marine environment, an adaptive sampling method based on Gaussian process regression (GPR) for small autonomous underwater vehicle (AUV) is proposed. Firstly, the estimation accuracies and the computational efficiencies are compared among different regression inference methods in GPR, and the sampling interval time is determined. On this basis, GPR analysis is used to predict the environmental data of unobserved areas based on the real-time observation data from AUV, and the AUV is guided to implement online path planning by calculating the regional gradient extremum and the forecasting uncertainty. Finally, this method is used to simulate the regional environmental observation with different feature distributions. Results show that this method can estimate the low-error feature distribution of the observed area more efficiently than the conventional method, can obtain features of the hot spot area more quickly in the observed area, and is more adaptable to the observed area with different feature distributions.
Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/22751
Collection水下机器人研究室
Corresponding Author阎述学
Affiliation1.中国科学院沈阳自动化研究所机器人学国家重点实验室
2.中国科学院大学
Recommended Citation
GB/T 7714
阎述学,李一平,封锡盛. 一种基于高斯过程回归的AUV自适应采样方法[J]. 机器人,2019,41(2):232-241.
APA 阎述学,李一平,&封锡盛.(2019).一种基于高斯过程回归的AUV自适应采样方法.机器人,41(2),232-241.
MLA 阎述学,et al."一种基于高斯过程回归的AUV自适应采样方法".机器人 41.2(2019):232-241.
Files in This Item:
File Name/Size DocType Version Access License
一种基于高斯过程回归的AUV自适应采样方(3162KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[阎述学]'s Articles
[李一平]'s Articles
[封锡盛]'s Articles
Baidu academic
Similar articles in Baidu academic
[阎述学]'s Articles
[李一平]'s Articles
[封锡盛]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[阎述学]'s Articles
[李一平]'s Articles
[封锡盛]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 一种基于高斯过程回归的AUV自适应采样方法.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.