SIA OpenIR  > 工业控制网络与系统研究室
Fault detection, classification, and location for active distribution network based on neural network and phase angle analysis
Zhang T(张彤)1; Liu JC(刘建昌)1; Sun LX(孙兰香)2,3,4; Yu HB(于海斌)2,3,4; Zhang, Yingwei1
作者部门工业控制网络与系统研究室
关键词Ann Neural Network Phase Angle Active Distribution Network (Adn) Fault Diagnosis
发表期刊JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS
ISSN0253-3839
2018
卷号41期号:5页码:375-386
收录类别SCI ; EI
EI收录号20183705802147
WOS记录号WOS:000443901100002
产权排序2
资助机构National Natural Science Foundation of China ; National High Technology Research and Development Program of China ; IAPI Fundamental Research Funds
摘要

The improved radial basis function (RBF) method utilizes an orthogonal regression matrix to produce an artificial neural network structure based on regularized least square. The phase angle and amplitude signal of fault voltage and current are extracted based on frequency domain analysis. The proposed method adopts the fault signal for fault diagnosis synchronously. The IEEE 13-bus active distribution network (ADN) simulation model is set up in Matlab. Test results demonstrate that accuracy of the fault diagnosis can reach 98.07% and the response time of the fault classification method is less than 0.04s. The wavelet neural network (WNN) model is developed to extract the maximum decomposition level and time series behavior. The WNN method can resist noise effects and improve the fault classification accuracy by 4.3%. The effect of fault type and fault resistance on the fault location method is researched. The fault simulation result shows that the proposed method can locate a fault precisely and synchronously. The improved RBF method can diagnose the fault section, classify the fault type and locate a fault accurately in ADN. The research is significant to maintain system stability against realistic fault and network restore.

语种英语
WOS类目Engineering, Multidisciplinary
关键词[WOS]Distribution-systems ; Transmission-lines ; Identification ; Algorithm ; Svm
WOS研究方向Engineering
资助项目National Natural Science Foundation of China[61374137] ; National Natural Science Foundation of China[61100159] ; National Natural Science Foundation of China[61233007] ; National High Technology Research and Development Program of China[2011AA040103] ; IAPI Fundamental Research Funds[2013ZCX02-03]
引用统计
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/22763
专题工业控制网络与系统研究室
通讯作者Liu JC(刘建昌)
作者单位1.College of Information Science and Engineering, Northeastern University, Shenyang, China
2.Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang, China
3.Key Laboratory of Networked Control System, CAS, Shenyang, China
4.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Zhang T,Liu JC,Sun LX,et al. Fault detection, classification, and location for active distribution network based on neural network and phase angle analysis[J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS,2018,41(5):375-386.
APA Zhang T,Liu JC,Sun LX,Yu HB,&Zhang, Yingwei.(2018).Fault detection, classification, and location for active distribution network based on neural network and phase angle analysis.JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS,41(5),375-386.
MLA Zhang T,et al."Fault detection, classification, and location for active distribution network based on neural network and phase angle analysis".JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS 41.5(2018):375-386.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Fault detection clas(2715KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang T(张彤)]的文章
[Liu JC(刘建昌)]的文章
[Sun LX(孙兰香)]的文章
百度学术
百度学术中相似的文章
[Zhang T(张彤)]的文章
[Liu JC(刘建昌)]的文章
[Sun LX(孙兰香)]的文章
必应学术
必应学术中相似的文章
[Zhang T(张彤)]的文章
[Liu JC(刘建昌)]的文章
[Sun LX(孙兰香)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Fault detection classification and location for active distribution network based on neural network and phase angle analysis.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。