SIA OpenIR  > 光电信息技术研究室
An Extensible Local Surface Descriptor for 3D Object Recognition
Lu RR(鲁荣荣)1,2,3,4; Zhu F(朱枫)1,3,4; Hao YM(郝颖明)1,2,3,4; Cai HY(蔡慧英)1,2,3,4; Wu QX(吴清潇)1,3,4
作者部门光电信息技术研究室
会议名称7th IEEE Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017
会议日期July 31 - August 4, 2017
会议地点Hawaii, USA
会议主办者IEEE Robotics and Automation Society
会议录名称2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017
出版者IEEE
出版地New York
2017
页码611-616
收录类别EI ; CPCI(ISTP)
EI收录号20183905873624
WOS记录号WOS:000447628700112
产权排序1
ISBN号978-1-5386-0489-2
摘要

This paper presents a novel local surface descriptor by encoding the neighboring points' position angles of a key point into a histogram. The generation of the feature descriptor is simple and efficient. Firstly, we construct a Local Reference Frame (LRF) by performing eigenvalue decomposition on a scatter covariance matrix. Then, the sphere support of the key point is divided into several sphere shells. In each sphere shell, we calculate the angles between a neighboring point and z-axis, x-axis respectively. Subsequently, the cosine values of these two angles are mapped into two 1D histograms respectively. Finally, all the 1D histograms are put together followed by a normalization to form the descriptor. Our proposed local surface descriptor is called Signature of Position Angles Histograms (SPAH). As for a point cloud with color information, the SPAH can easily be extended to a Color SPAH (CSPAH) descriptor only by adding one more 1D histogram generated by the color information in each sphere shell. The performance of the proposed SPAH was tested on the Bologna Dataset 1 to compare with several state-of-the-art feature descriptors. The experiment results show that our SPAH descriptor is more robust to noise and vary mesh decimations. Moreover, our SPAH and CSPAH descriptors based 3D object recognition algorithms achieved a good performance on the Bologna Dataset 3.

语种英语
引用统计
文献类型会议论文
条目标识符http://ir.sia.cn/handle/173321/22829
专题光电信息技术研究室
通讯作者Zhu F(朱枫)
作者单位1.Shenyang Institute of Automation, CAS, Shenyang 110016, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Key Laboratory of Opto-Electronic Information Processing, CAS, Shenyang 110016, China
4.Key Lab of Image Understanding and Computer Vision, Liaoning Province, Shenyang 110016, China
推荐引用方式
GB/T 7714
Lu RR,Zhu F,Hao YM,et al. An Extensible Local Surface Descriptor for 3D Object Recognition[C]//IEEE Robotics and Automation Society. New York:IEEE,2017:611-616.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
An Extensible Local (995KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu RR(鲁荣荣)]的文章
[Zhu F(朱枫)]的文章
[Hao YM(郝颖明)]的文章
百度学术
百度学术中相似的文章
[Lu RR(鲁荣荣)]的文章
[Zhu F(朱枫)]的文章
[Hao YM(郝颖明)]的文章
必应学术
必应学术中相似的文章
[Lu RR(鲁荣荣)]的文章
[Zhu F(朱枫)]的文章
[Hao YM(郝颖明)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: An Extensible Local Surface Descriptor for 3D Object Recognition.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。