SIA OpenIR  > 机器人学研究室
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network
Chu YQ(褚亚奇)1,2,3; Zhao XG(赵新刚)1,2; Zou YJ(邹宜君)1,2,3; Xu WL(徐卫良)1,4; Han JD(韩建达)1,2; Zhao YW(赵忆文)1,2
作者部门机器人学研究室
关键词brain-computer interface decoding scheme incomplete motor imagery EEG power spectral density deep belief network
发表期刊FRONTIERS IN NEUROSCIENCE
ISSN1662-453X
2018
卷号12页码:1-17
收录类别SCI
WOS记录号WOS:000445928200001
产权排序1
资助机构National Nature Science Foundation of China ; Chinese Academy of Sciences ; Liaoning Provincial Doctoral Starting Foundation of China
摘要High accuracy decoding of electroencephalogram (EEG) signal is still a major challenge that can hardly be solved in the design of an effective motor imagery-based brain-computer interface (BCI), especially when the signal contains various extreme artifacts and outliers arose from data loss. The conventional process to avoid such cases is to directly reject the entire severely contaminated EEG segments, which leads to a drawback that the BCI has no decoding results during that certain period. In this study, a novel decoding scheme based on the combination of Lomb-Scargle periodogram (LSP) and deep belief network (DBN) was proposed to recognize the incomplete motor imagery EEG. Particularly, instead of discarding the entire segment, two forms of data removal were adopted to eliminate the EEG portions with extreme artifacts and data loss. The LSP was utilized to steadily extract the power spectral density (PSD) features from the incomplete EEG constructed by the remaining portions. A DBN structure based on the restricted Boltzmann machine (RBM) was exploited and optimized to perform the classification task. Various comparative experiments were conducted and evaluated on simulated signal and real incomplete motor imagery EEG, including the comparison of three PSD extraction methods (fast Fourier transform,Welch and LSP) and two classifiers (DBN and support vector machine, SVM). The results demonstrate that the LSP can estimate relative robust PSD features and the proposed scheme can significantly improve the decoding performance for the incomplete motor imagery EEG. This scheme can provide an alternative decoding solution for the motor imagery EEG contaminated by extreme artifacts and data loss. It can be beneficial to promote the stability, smoothness and maintain consecutive outputs without interruption for a BCI system that is suitable for the online and long-term application.
语种英语
WOS类目Neurosciences
关键词[WOS]BRAIN-COMPUTER INTERFACES ; SENSORIMOTOR RHYTHMS ; COMPONENT ANALYSIS ; FEATURE-EXTRACTION ; CLASSIFICATION ; ELECTROENCEPHALOGRAM ; REHABILITATION ; ARTIFACTS ; ALGORITHM ; REMOVAL
WOS研究方向Neurosciences & Neurology
资助项目National Nature Science Foundation of China[61503374] ; National Nature Science Foundation of China[61573340] ; Chinese Academy of Sciences[QYZDY-SSW-JSC005] ; Liaoning Provincial Doctoral Starting Foundation of China[201501032]
引用统计
文献类型期刊论文
条目标识符http://ir.sia.cn/handle/173321/23353
专题机器人学研究室
通讯作者Zhao XG(赵新刚)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2.2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
3.3University of Chinese Academy of Sciences, Beijing, China
4.Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand
推荐引用方式
GB/T 7714
Chu YQ,Zhao XG,Zou YJ,et al. A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network[J]. FRONTIERS IN NEUROSCIENCE,2018,12:1-17.
APA Chu YQ,Zhao XG,Zou YJ,Xu WL,Han JD,&Zhao YW.(2018).A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network.FRONTIERS IN NEUROSCIENCE,12,1-17.
MLA Chu YQ,et al."A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network".FRONTIERS IN NEUROSCIENCE 12(2018):1-17.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Decoding Scheme fo(3629KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chu YQ(褚亚奇)]的文章
[Zhao XG(赵新刚)]的文章
[Zou YJ(邹宜君)]的文章
百度学术
百度学术中相似的文章
[Chu YQ(褚亚奇)]的文章
[Zhao XG(赵新刚)]的文章
[Zou YJ(邹宜君)]的文章
必应学术
必应学术中相似的文章
[Chu YQ(褚亚奇)]的文章
[Zhao XG(赵新刚)]的文章
[Zou YJ(邹宜君)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。