SIA OpenIR  > 机器人学研究室
三维环境中基于ESMF的多机器人协作观测方法
Alternative TitleMulti-UAV Cooperative Observation Based on ESMF in 3D Environments
谷丰; 何玉庆; 韩建达; 王越超
Department机器人学研究室
Source Publication机器人
ISSN1002-0446
2009
Volume31Issue:S1Pages:73-80
Indexed ByEI
EI Accession number20103013094129
Contribution Rank1
Funding Organization机器人学国家重点实验室自主课题资助(RLZ200806)
Keyword多机器人系统 扩展集员估计方法 协作观测
Abstract提出了一种基于扩展集员估计(ESMF)的多机器人协作观测方法,该方法将多机器人之间的观测数据融合过程嵌入到估计过程当中,从而减少了数据处理的过程,增强了算法的快速性。同时,这种方法在实现协作观测时只需要协作机器人传送观测信息而不是整个的估计信息,因此可以减轻多机器人系统的通信负担。除此之外,该方法在融合多机器人的观测数据过程中避免了多余的近似过程,增加了观测的准确性。最后,给出了三维环境下的仿真结果,验证了方法的可行性。
Other AbstractA new multiple unmanned aerial vehicles (UAVs) cooperative observation approach based on extended set-membership filter (ESMF) is proposed to track a moving target in 3D environments. The new method embeds the data fusion among multiple UAVs into estimation process, which decreases the data processing and improves the algorithm speed. Only observation information is transmitted by the cooperative UAV during cooperative observation, so the communication burden of the multi-UAV system is relatively light. Moreover, when fusing the observation result, the new method avoids approximating estimation result so as to improve the accuracy of the cooperative observation result. Finally, the simulations in 3D environments are conducted to verify the feasibility of the method.
Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/2340
Collection机器人学研究室
Corresponding Author谷丰
Affiliation1.中国科学院沈阳自动化研究所机器人学国家重点实验室
2.中国科学院研究生院
Recommended Citation
GB/T 7714
谷丰,何玉庆,韩建达,等. 三维环境中基于ESMF的多机器人协作观测方法[J]. 机器人,2009,31(S1):73-80.
APA 谷丰,何玉庆,韩建达,&王越超.(2009).三维环境中基于ESMF的多机器人协作观测方法.机器人,31(S1),73-80.
MLA 谷丰,et al."三维环境中基于ESMF的多机器人协作观测方法".机器人 31.S1(2009):73-80.
Files in This Item: Download All
File Name/Size DocType Version Access License
ZWQKQW0000573.pdf(789KB)期刊论文出版稿开放获取ODC PDDLView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[谷丰]'s Articles
[何玉庆]'s Articles
[韩建达]'s Articles
Baidu academic
Similar articles in Baidu academic
[谷丰]'s Articles
[何玉庆]'s Articles
[韩建达]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[谷丰]'s Articles
[何玉庆]'s Articles
[韩建达]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: ZWQKQW0000573.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.