SIA OpenIR  > 智能检测与装备研究室
关于多目标优化算法搜索性能优化研究
Alternative TitleResearch on Searching Performance Optimization of Multi-Objective Optimization Algorithm
李想1,2; 杜劲松1
Department智能检测与装备研究室
Source Publication计算机仿真
ISSN1006-9348
2018
Volume35Issue:9Pages:271-276
Contribution Rank1
Keyword约束多目标优化 人工免疫系统 多智能体系统 多样性 收敛性
Abstract

在约束多目标优化问题中,约束条件的限制使得优化算法在收敛到最优解或保持解集多样性方面存在很大困难,为了提高算法的多样性和收敛性,提出一种将人工免疫系统与多Agent系统相结合的约束多目标优化算法。算法结合二者的优点,通过邻域克隆选择行为、邻域竞争行为、邻域协作行为以及自学习行为来完成高效的局部和全局搜索。算法用距离值和惩罚项对Agent个体的目标函数值进行修正。在进化过程中,充分利用约束偏离值较小的不可行解,以保持种群多样性,避免早熟收敛。在标准测试函数(CTP测试集)上,将提出的算法与其它3种优秀算法进行对比实验,实验结果表明,提出的算法所求解集的多样性和收敛性比其它3种算法均有一定的提高,搜索性能得到了优化。

Other Abstract

In constrained multi-objective optimization problems, constraint conditions make them difficult for optimization algorithms to converge to the optimal solution or keep individual diversity. To improve the diversity and convergence of algorithms,a constrained multi-objective optimization algorithm combining artificial immune system with multi-agent system is proposed. The proposed algorithm combines the advantages of the artificial immune system and the multi-agent system,and completes the local and global search efficiently through neighborhood clone selection operator, neighborhood competition operator, neighborhood collaboration operator, and self-learning operator. The algorithm uses distance value and penalty to modify the objective values of agent individuals. During the evolutionary process,the algorithm utilizes the infeasible solutions with smaller constrained violation values to keep individual diversity and avoid prematurity. On the standard test functions ( CTP series) ,the proposed algorithm is compared with another three excellent algorithms. Experimental results show that the optimal solutions of the proposed algorithm are better than those of another three algorithms in terms of diversity and convergence,and the searching performance is optimized.

Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/23410
Collection智能检测与装备研究室
Corresponding Author李想
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
李想,杜劲松. 关于多目标优化算法搜索性能优化研究[J]. 计算机仿真,2018,35(9):271-276.
APA 李想,&杜劲松.(2018).关于多目标优化算法搜索性能优化研究.计算机仿真,35(9),271-276.
MLA 李想,et al."关于多目标优化算法搜索性能优化研究".计算机仿真 35.9(2018):271-276.
Files in This Item: Download All
File Name/Size DocType Version Access License
关于多目标优化算法搜索性能优化研究.pd(426KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李想]'s Articles
[杜劲松]'s Articles
Baidu academic
Similar articles in Baidu academic
[李想]'s Articles
[杜劲松]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李想]'s Articles
[杜劲松]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 关于多目标优化算法搜索性能优化研究.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.