SIA OpenIR  > 工业控制网络与系统研究室
基于二叉检测树的智能电网邻居区域恶意电表检测方法
Alternative TitleBinary detection tree-based intelligent power grid neighbor area malware detection method
梁炜; 夏小芳; 郑萌; 张晓玲
Department工业控制网络与系统研究室
Rights Holder中国科学院沈阳自动化研究所
Patent Agent沈阳科苑专利商标代理有限公司 21002
Country中国
Subtype发明授权
Status有权
Abstract本发明涉及一种基于二叉检测树的智能电网邻居区域恶意电表检测方法。本发明以用户电表为叶子节点,建立二叉检测树作为逻辑结构,辅助查找智能电网邻居区域中的恶意电表;当检测器检测二叉树上的任意节点时,不仅检测以该节点为根的子树下是否有恶意电表,而且计算该子树下所有用户的窃电量;在分别得到以某节点及其左孩子为根的子树下所有用户的窃电量之后,根据这两个窃电量之间的差值,检测器判断下一个需要检测的二叉树节点;若以某节点为根的子树下无恶意电表,检测器无需再对其进行检测;采用前序遍历方式,若某节点为二叉检测树上的右孩子,则检测器可跳过该节点而对其左孩子节点进一步检测。本发明使得检测器能够跳过二叉检测树上的大部分逻辑节点,从而提高检测速度,快速、准确地定位智能电网邻居区域中的恶意电表。
Other AbstractThe method involves mounting a malware detector at a neighbor area to monitor neighbor area malware. Binary tree building process is performed by randomly selecting a user as leaf node and detecting a tree node by the malware detector. Quantity of sub-tree of a root node is determined by the malware detector. A number of nodes of a binary detection tree in the neighbor area are calculated by the malware detector. The binary detection tree is divided into a first layer of leaf nodes and a second layer of leaf nodes.
PCT Attributes
Application Date2015-05-19
2017-01-04
Date Available2018-11-27
Application NumberCN201510256936.5
Open (Notice) NumberCN106291436B
Language中文
Contribution Rank1
Document Type专利
Identifierhttp://ir.sia.cn/handle/173321/23631
Collection工业控制网络与系统研究室
Affiliation中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
梁炜,夏小芳,郑萌,等. 基于二叉检测树的智能电网邻居区域恶意电表检测方法[P]. 2017-01-04.
Files in This Item: Download All
File Name/Size DocType Version Access License
CN201510256936.5授权.p(571KB)专利 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[梁炜]'s Articles
[夏小芳]'s Articles
[郑萌]'s Articles
Baidu academic
Similar articles in Baidu academic
[梁炜]'s Articles
[夏小芳]'s Articles
[郑萌]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[梁炜]'s Articles
[夏小芳]'s Articles
[郑萌]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: CN201510256936.5授权.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.