SIA OpenIR  > 水下机器人研究室
使用小波分析的水下机器人多传感器故障检测
Alternative TitleMulti-sensor Fault Detection of Underwater Robot Based on Wavelet Analysis
崔旭晶1; 王宪勇1,2
Department水下机器人研究室
Source Publication单片机与嵌入式系统应用
ISSN1009-623X
2018
Volume18Issue:11Pages:33-36
Contribution Rank2
Keyword数据分析 故障检测 小波分析 传感器
Abstract水下机器人在采集数据时,其传感器容易发生故障,为此,提出一种基于小波变换对传感器进行故障诊断方法,对传感器的输出信号做小波变换,采用硬阈值与软阈值方法求出信号的奇异值,判断故障点。实验结果表明,小波分析方法能够准确检测传感器故障,而且该方法具有简单、快速、依赖系统模型程度低和诊断效果好等优点。
Other AbstractWhen an underwater robot collects data, its sensors are prone to malfunction. To solve this problem, in the paper, a fault diagnosis method based on the wavelet transform is proposed.The output signal of the sensor is to do the wavelet transform. The hard threshold and the soft threshold method are used to find the singular value of the signal and the fault point is found. The experiment results show that the wavelet analysis method can accurately detect the sensor failure,and the method has the advantages of simplicity,rapidness, low dependence on the system model and good diagnostic effect.
Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/23660
Collection水下机器人研究室
Corresponding Author崔旭晶
Affiliation1.沈阳理工大学自动化与电气工程学院
2.中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
崔旭晶,王宪勇. 使用小波分析的水下机器人多传感器故障检测[J]. 单片机与嵌入式系统应用,2018,18(11):33-36.
APA 崔旭晶,&王宪勇.(2018).使用小波分析的水下机器人多传感器故障检测.单片机与嵌入式系统应用,18(11),33-36.
MLA 崔旭晶,et al."使用小波分析的水下机器人多传感器故障检测".单片机与嵌入式系统应用 18.11(2018):33-36.
Files in This Item: Download All
File Name/Size DocType Version Access License
使用小波分析的水下机器人多传感器故障检测(1697KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[崔旭晶]'s Articles
[王宪勇]'s Articles
Baidu academic
Similar articles in Baidu academic
[崔旭晶]'s Articles
[王宪勇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[崔旭晶]'s Articles
[王宪勇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 使用小波分析的水下机器人多传感器故障检测.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.