SIA OpenIR  > 数字工厂研究室
Alternative TitleGrinding process particle size modeling method using robust RVFLN -based ensemble learning
李德鹏1; 代伟1,2; 赵大勇3; 黄罡1; 马小平1
Source Publication工程科学学报
Indexed ByEI ; CSCD
EI Accession number20191306700801
Contribution Rank3
Funding Organization国家自然科学基金青年资助项目(61603393) ; 江苏省自然科学基金青年基金资助项目(BK20160275) ; 中国博士后科学基金资助项目(2015M581885, 2018T110571) ; 流程工业综合自动化国家重点实验室开放课题资助项目(PAL-N201706) ; 江苏省研究生科研与实践创新计划资助项目(SJCX17_0524)
Keyword磨矿粒度 随机向量函数链接网络 集成学习 鲁棒性 数据融合
Abstract作为磨矿过程的主要生产质量指标,磨矿粒度是实现磨矿过程闭环优化控制的关键。将磨矿粒度控制在一定范围内能够提高选别作业的精矿品位和有用矿物的回收率,并减少有用矿物的金属流失。由于经济和技术上的限制,磨矿粒度的实时测量难以实现。因此,磨矿粒度的在线估计显得尤为重要。然而,目前我国所处理的铁矿石大多数为性质不稳定的赤铁矿,其矿浆颗粒存在磁团聚现象,所采集的数据存在大量异常值,使得利用数据建立的磨矿粒度模型存在较大误差。同时,传统前馈神经网络在磨矿粒度数据建模过程中存在收敛速度慢、易于陷入局部最小值等缺点,同时单一模型泛化性能较差,现有的集成学习在异常值干扰下性能严重下降。因此,本文在改进的随机向量函数链接网络(random vector functional link networks,RVFLN)的基础上,将Bagging算法与自适应加权数据融合技术相结合,提出一种基于鲁棒随机向量函数链接网络的集成建模方法,用于磨矿粒度集成建模。所提方法首先通过基准回归问题进行了实验研究,然后采用磨矿工业实际数据进行验证,表明其有效性。
Other AbstractAs a key production quality index of grinding process, particle size is of great importance to closed-loop optimization and control. This is because controlling particle within a proper range can improve the concentrate grade, enhance the recovery rate of useful minerals, and reduce the loss of metal in the sorting operation; thus, the particle size determines the overall performance of the grinding process. In fact, it is not easy to optimize or control the practical industrial process because the optimal operation largely depends on a good measurement of particle size of grinding process; however, it is difficult to realize the real-time measurement of particle size because of limitations of economy or technique. Employing soft sensor techniques is necessary to solve the problem of particle size estimation, which is particularly important for the actual grinding processes. Considering that soft sensors are applicable in many fields, the data-driven soft sensor will be a useful tool for achieving particle size estimation. However, most of the iron ores processed in China are characterized by hematite with unstable properties, and the slurry particles exhibit magnetic agglomeration, giving rise to a large number of outliers in the collected data. In this case, there are gross errors in the particle size estimation model constructed based on the data and thus unreliable measurements. Meanwhile, the traditional feedforward neural networks have the disadvantages of slow convergence speed and easily fall into local minimum during the prediction process. A single model tends to lack superiority in sound generalization, and the performance of existing ensemble learning methods will be worse under outlier interference. Therefore, in this study, based on the improved random vector functional link networks (RVFLN), the Bagging algorithm is incorporated into an adaptive weighted data fusion technique to develop an ensemble learning method for particle size estimation of grinding processes. Experimental studies were first conducted through benchmark regression issues and then validated by the samples collected from an actual grinding process, indicating the effectiveness of the proposed method.
Citation statistics
Document Type期刊论文
Corresponding Author代伟
Recommended Citation
GB/T 7714
李德鹏,代伟,赵大勇,等. 一种基于鲁棒随机向量函数链接网络的磨矿粒度集成建模方法[J]. 工程科学学报,2019,41(1):67-77.
APA 李德鹏,代伟,赵大勇,黄罡,&马小平.(2019).一种基于鲁棒随机向量函数链接网络的磨矿粒度集成建模方法.工程科学学报,41(1),67-77.
MLA 李德鹏,et al."一种基于鲁棒随机向量函数链接网络的磨矿粒度集成建模方法".工程科学学报 41.1(2019):67-77.
Files in This Item:
File Name/Size DocType Version Access License
一种基于鲁棒随机向量函数链接网络的磨矿粒(814KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李德鹏]'s Articles
[代伟]'s Articles
[赵大勇]'s Articles
Baidu academic
Similar articles in Baidu academic
[李德鹏]'s Articles
[代伟]'s Articles
[赵大勇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李德鹏]'s Articles
[代伟]'s Articles
[赵大勇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 一种基于鲁棒随机向量函数链接网络的磨矿粒度集成建模方法.pdf
Format: Adobe PDF
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.