SIA OpenIR  > 机器人学研究室
无线供能磁驱动微型机器人及操控方法研究
Alternative TitleResearch of Electromagnetic Microrobots with Wireless Power Transmission: Motion and Manipulation Control
王敬依1,2
Department机器人学研究室
Thesis Advisor童兆宏
Keyword微型机器人 磁驱动系统 视觉反馈 自动控制 无线能量传输
Pages114页
Degree Discipline检测技术与自动化装置
Degree Name博士
2019-05-16
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract本文以磁驱动微型机器人为研究对象,进行了磁驱动系统的构建,磁驱动微型机器人的手动及自动控制模式分析与设计,实现磁驱动微型机器人沿规划路径的二维和三维可控运动,及对微小结构的操作与图形化。创新性提出将外界电能无线传输给微型机器人的方法,将电能分别转化为光能引导藻类微生物以及转换为夹持器机械能夹持微小结构,并验证了该方法的有效性。研究内容主要包括下面四个部分:(1)磁驱动系统的设计与搭建:针对磁场驱动的微型机器人的控制方法,利用电磁线圈产生磁场的可控性、对称性、叠加性,原创性地搭建了以可调位置的电磁线圈为基础控制部件的磁驱动系统。阐明了电流与磁场的控制关系,完成了手动控制模式中操作者所需控制手柄与控制信号放大传输硬件搭建。结合实验测试得到了搭建的磁驱动系统产生磁场性能。为磁驱动机器人的手动控制方法,自动控制方法及三维空间运动控制等相关应用的研究奠定坚实的基础。(2)磁驱动微型机器人的运动控制与操作研究:在磁驱动系统搭建完成的基础上,进行了磁驱动微型机器人在模拟人体液态环境下的运动控制研究。通过实验验证了磁驱动微型机器人的手动控制方法控制微型机器人在微流控芯片内进行液体的混合的有效性。进行图像处理与视觉动态图像采集研究,进一步建立基于视觉反馈的磁驱动机器人自动循迹控制方法。实现了在二维平面控制微型机器人进行精确循迹运动控制。在此基础上,进行磁驱动微型机器人在基底或者气/液界面对微小物体进行推动操作的研究,结合自动循迹控制方法,完成自动控制完成复杂或者重复性工作。结合侧视显微镜,实现了磁驱动机器人在三维液态空间内的循迹运动。(3)磁驱动无线供能仿鮟鱇机器人研究:在磁驱动微型机器人的运动控制研究基础之上,实现机器人多功能化,利用电磁共振原理,在外部设计具有无线供能功能的发射线圈,实现外部能量传输给磁驱动机器人。对无线能量传输进行数学建模与理论仿真,建立了无线供能系统。利用无线供能方法结合磁驱动机器人,设计制作了磁驱动仿鮟鱇无线供能机器人,从无线供能系统接收能量,并将能量转化为光能;对藻类细胞的趋光性等生物学特性进行研究分析,利用仿鮟鱇机器人实现对藻类细胞的可控光引导控制。(4)结合电致变形材料IPMC(ion-exchange polymer metal composite)的磁驱动机器人研究:在实现磁驱动微型机器人接收外部能量的基础上,进行具有夹持执行器的微型机器人的研究,研究中以电致变形智能材料IPMC为主,对其进行了理论建模,分析与实验,实验中测试得到机器人夹持器所需IPMC参数,进一步设计利用IPMC作为驱动部件的夹持器。进行在同一磁场下双机器人受到磁场力与磁转矩及粘滞转矩进行数学建模,有限元仿真,实现双机器人在磁场内部协同运动。将IPMC夹持器与双机器人运动控制方法相结合,制作了具有IPMC夹持器的磁驱动仿蚂蚁机器人。实现了磁驱动仿蚂蚁机器人在液态环境下,对多个氧化锆微球的夹持拾取,可控移动传输,完成多个氧化锆微球的图形化。结合同一磁场内部对双机器人的控制方法,进行了双机器人对微小部件进行有效夹持、转动、移动,完成精确拼接的工作。本文的研究工作为磁驱动微型机器人的研究提供了相关理论,为开发具有三维运动、定点操作、运输和释放能力的微型操作机器人提供了相关技术,也将对生物医疗等相关领域产生积极的推动作用。
Other AbstractThis thesis will propose a multi-functional electromagnetic robot. We will establish an electromagnetic actuation system and study the control method of electromagnetic microrobots. Then we will research the two and three dimensional motion control and manipulation of micro devices. We will innovatively propose the multi-functional electromagnetic microrobot combined with wireless power transmission technology. The microrobot will realize lighting LEDs to guide and control algae cells through wireless power transmission method, which validates the efficiency of this method. This thesis mainly includes the following four contents: (1) Design and establishment of electromagnetic actuation system: the electromagnetic actuation system with position adjustable coils is established due to the great penetrability, superposition, and controllability of the magnetic fields. The relationship between currents and magnetic fields is clarified and hardware establishment of the signal amplification and the control joystick in manual control method are completed. The performance test of the electromagnetic actuation system is obtained. This part of the research lays a solid foundation for the research on the manual control method, automatic control method and three-dimensional motion control of the electromagnetic microrobots. (2) Motion control and manipulation of electromagnetic microrobots: On the basis of electromagnetic actuation system, motion control of the electromagnetic microrobots is studied. The performance of micromixing verifies the effectiveness of the manual control method of the microrobot actuating and working in the liquid environment. The research of image processing and dynamic images acquisition is carried out to further establish an automatic tracking trajectory method. The precise tracking motion control and manipulation on micro devices in two-dimensional plane are realized. The automatic tracking motion in three-dimensional liquid environment is studied. (3) Study of anglerfish-shaped wireless powered millirobot: Based on the research of micorobot’s motion control, the multi-functional robot is realized through transferring power to the robot. Mathematical modeling and theoretical simulation of wireless power transmission are analyzed and the wireless power transmission system is established. The phototaxis and other biological characteristics of algal cells are studied and analyzed. An anglerfish-shaped wireless powered millirobot that can light a LED and guide Pandorina morum cells is proposed. (4) Research of wireless electromagnetic robot with IPMC (ion-exchange polymer metal composite) actuator: Electromagnetically controlled ant millirobots that can move, clamp, and work cooperatively are studied based on study of electromagnetic motion control and wireless power transmission system. Mathematical modeling and theoretical simulation of IPMCs are analyzed and the parameters are obtained through experiments. Based on the analysis and experiments, the IPMC gripper is designed. Cooperative work of dual robots in the same electromagnetic field is achieved through analyzing the magnetic force, magnetic torque, and viscous torque on the robots. The ant robot can be electromagnetically controlled to move and wirelessly receive electric energy and actuate its IPMC gripper is designed. The ant robot can be controlled to clamp and deliver one or multiple microspheres. Some complicated assembly tasks can be finished cooperatively by two ant robots. Small components are clamping, delivering and splicing by two robots cooperatively. The research in this dissertation enriches theory of electromagnetic microrobots research, and supplies the theory and technique for building new type of microrobots with the ability of manipulating, transporting, and releasing cargos. Likewise, the research will produce the positive impetus to developing of biomedical and other fields.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/25155
Collection机器人学研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
王敬依. 无线供能磁驱动微型机器人及操控方法研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2019.
Files in This Item:
File Name/Size DocType Version Access License
无线供能磁驱动微型机器人及操控方法研究.(5657KB)学位论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[王敬依]'s Articles
Baidu academic
Similar articles in Baidu academic
[王敬依]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王敬依]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.