SIA OpenIR  > 空间自动化技术研究室
面向加注任务的末端夹持器设计与机器人轨迹规划研究
Alternative TitleDesign of the Gripper for Refueling Task and Research on the Manipulator Trajectory Planning
刘云军1,2
Department空间自动化技术研究室
Thesis Advisor李杨民 ; 刘金国
Keyword加注机器人 末端夹持器 接触动力学 轨迹规划
Pages77页
Degree Discipline机械电子工程
Degree Name硕士
2019-05-17
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract本文以一种加注管路快速接头为研究对象,设计了一款结构紧凑、重量较轻的五自由度多功能末端夹持器,用于实现管路快速接头的自动化对接。并将该末端夹持器安装于六自由度机械臂末端,通过轨迹规划实现管路快速接头的自动抓取。本论文的研究内容如下:(1)分析管路快速接头人工手动对接过程,基于仿人手操作的设计思路设计了一款五自由度多功能末端夹持器。并利用ANSYS/Workbench软件对末端夹持器手指进行静力学分析,得到夹持器手指的应力云图与位移云图。依据云图显示结果分析结构的危险区域和刚度裕度较大的区域,为后续样机制作提供参考。(2)基于机器人运动学中空间矢量变换规则,利用D-H表示法求解机器人的正运动学方程,并用MATLAB编制程序对正运动学方程求解结果进行验证,同时采用解析法对逆运动学中各关节角的表达式进行求解。利用MATLAB机器人工具箱Robotics/Toolbox建立机械臂运动学模型,并对加注机器人末端夹持器进行轨迹规划研究,获得加注机器人在整个运动周期的关节角、角速度、角加速度变化规律。在Adams软件中构建加注机器人虚拟仿真实验平台,利用MATLAB轨迹规划得到的关节角数据创建SPLINE曲线,并采用Adams中的CUBSPL函数和STEP函数控制加注机器人进行快速接头的自动抓取对接仿真实验。(3)对常见的刚体接触碰撞动力学问题进行研究,采用等效弹簧阻尼模型法建立了“快速接头与机器人末端夹持器”之间的接触动力学模型。之后利用Adams软件模拟夹持器与快速接头的接触碰撞过程。通过对接触碰撞过程仿真结果进行分析,获得接触碰撞过程中的最大接触力,以及夹持器手指质心的加速度、速度和位移随时间变化规律。(4)根据末端夹持器的结构研制实验样机,并将末端夹持器实验样机安装于六自由度机械臂末端,完成加注机器人实验平台的搭建。之后对末端夹持器的气压传动系统进行设计,并在fluidSIM软件上对气压控制回路进行仿真测试,得到气压控制回路中各元件的状态变化图。利用以太网实现上位机软件与机械臂控制器之间的数据通信,进行加注机器人对快速接头的自动抓取实验。对实验抓取结果与轨迹规划仿真结果进行对比,验证轨迹规划的正确性以及实验方案的可行性。
Other AbstractIn this paper, taking a refueling pipe quick coupling as the research object, a compact and lightweight multi-function gripper was designed to realize the automatic docking of the pipe quick coupling. The research content of this paper is as follows: (1) By analyzing the manual docking process of the pipe quick coupling, a five-degree-of-freedom multi-function gripper is designed with the design method of human-like operation. The ANSYS/Workbench software is utilized to analyze the statics of the finger of the gripper. (2) Based on the research of space position vector representation and coordinate transformation in robot kinematics, the forward kinematics equation of the robot is deduced by D-H representation. And the analytical expressions of joint angles in inverse kinematics are obtained by the closed form solution. At the same time, the kinematics model of the manipulator is established by using Robotics/Toolbox of MATLAB. And the trajectory planning of the gripper of the refueling manipulator is studied. The variation rules of joint angle, angular velocity and angular acceleration of the refueling manipulator in the whole motion cycle are obtained. Meanwhile, the virtual simulation experiment platform of refueling manipulator is built in Adams software, and the SPLINE curve is created by using the joint data in MATLAB. Through the CUBSPL function and STEP function in Adams, the refueling manipulator is controlled to carry out the automatic gripping and docking simulation experiment of the quick coupling. (3) The common rigid body contact dynamics are studied, and the mathematical model of the contact dynamics between quick coupling and gripper of manipulator is established by using the method of equivalent spring damping model. At the same time, the Adams software is utilized to simulate the contact and collision process between the gripper and the quick coupling. Meanwhile, by analyzing the simulation results, the maximum contact force during contact collision and the acceleration, velocity and displacement of the gripper's finger centroid are changed with time. (4) According to the structure design of the gripper, a prototype of the principle is developed. Then the principle prototype of the gripper is installed on the six-degree-of-freedom manipulator, so the experimental platform of the refueling robot is built. According to the stress and strain nephogram, the dangerous area of the structure and the area with considerable stiffness margin can be known. The pneumatic transmission system of the gripper is designed, and the pneumatic control circuit is simulated and tested by fluidSIM software, and the state changes of the components in the pneumatic control circuit are obtained. Through the data communication between the host computer software and the manipulator controller, the automatic grasping and docking of the pipe quick coupling is realized.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/25192
Collection空间自动化技术研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
刘云军. 面向加注任务的末端夹持器设计与机器人轨迹规划研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2019.
Files in This Item:
File Name/Size DocType Version Access License
面向加注任务的末端夹持器设计与机器人轨迹(3676KB)学位论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘云军]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘云军]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘云军]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.