SIA OpenIR  > 机器人学研究室
基于运动模块化技术的机器人控制系统研究
Alternative TitleResearch of The Robot Comtrol System Based on Motion Modularity Technology
刘钊铭
Department机器人学研究室
Thesis Advisor赵忆文
Keyword机器人 运动模块化 运动描述语言 动态运动基元 工业以太网
Pages134页
Degree Discipline模式识别与智能系统
Degree Name博士
2019-11-25
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract机器人是融合了各种交叉学科尖端技术的机电系统,在现实世界中有着广泛的应用。随着“工业4.0”和人工智能时代的到来,新一代的机器人在本体上正在向轻量化、模块化方向发展,其功能也越发丰富,轨迹自动生成、参数自动辨识、力控制、人机协作等功能逐渐成为新一代机器人的标配。然而,机器人控制系统的架构却没有发生太大的变化,本质上还是上位控制器-电机驱动器的两级架构。由于机器人关节运动的中间点都由上位控制器产生,所以这种被广泛采用架构存在两种潜在的局限性: 1. 提高轨迹精度只能增加中间点的采样数量,这会产生巨大的数据通信量,大量数据可能超过总线系统带宽的上限。 2. 关节驱动器是一个被动的执行装置,只能接受上位控制器的指导,不能自主生成较为复杂的运动轨迹。 采用两级架构的传统机器人控制系统,相当于人类通过大脑直接指导每一块肌肉的运动。然而人类在进行运动的时候,大脑并没有过多思考肌肉和关节的运动细节。事实上,高等动物的神经系统采用三级架构(脑—脊髓中枢—肌肉)进行运动控制,其运动是通过对基本运动模块的组合生成的。这种运动控制架构,为克服机器人控制系统的局限提供了可能性。本文的主要贡献有: 1. 分析了现有机器人控制系统特点,参考神经科学的相关研究成果,模仿神经运动控制系统的结构,将运动模块化概念引入机器人系统,提出一种基于运动模块化技术的机器人控制系统架构,可以实现在不损失轨迹精度的前提下,降低总线实时数据传输量,提高关节自主性的诉求。 2. 研究了运动描述语言理论,将该理论与希尔伯特空间函数分解的相关理论结合,针对机械臂运动的特点,提出了用于机械臂轨迹生成的MDLg方法,初步建立了具有运动模块化特征的机器人控制系统。 3. 引入动态运动基元理论,解决了MDLg方法存在的动态性能不好、基元数量不定等问题,将反馈信号引入动态基元,为关节设计了一种DMP时间耦合控制器,提高了关节的抗干扰能力,建立了更为完善的运动模块化机器人控制系统。 本文的研究提供了一种可行的机器人控制系统运动模块化解决方案。基于本文提出的研究成果,设计了具有运动模块化功能的机器人控制系统,包含上位控制器、总线协议栈以及电机驱动器三个子系统,每部分都为运动模块化技术的实现开发了专用组件。该方案可以应用于实际的机器人控制系统,在不提高总线负载的前提下,改善机器人的运动性能。本文对EtherCAT系统和电机驱动器关键技术的研究开发亦有一定贡献。
Other AbstractThe robot is an electromechanical system that combines cutting-edge technologies from various interdisciplinary fields and has a wide range of applications in the real world. With the advent of "Industry 4.0" and the era of artificial intelligence, a new generation of robots is developing in the direction of lightweight and modularization, and its functions are becoming more and more abundant. Automatic trajectory generation, automatic parameter identification, force control, human-machine cooperation and other functions have gradually become the standard for a new generation of robots. However, the architecture of the robot control system has not changed much, it is essentially a two-level architecture of the upper controller-motor driver. Since the intermediate points of robotic joint motion are generated by the upper controller, there are two potential limitations to this widely adopted architecture: 1.Only increasing the number of samples at the intermediate point can increase the trajectory accuracy, which can result in huge data traffic, and a large amount of data may exceed the upper limit of the fieldbus system bandwidth. 2. The joint driver is a passive actuator that can only accept the guidance of the upper controller and cannot generate complex motion trajectories. A traditional robot control system with a two-level architecture is equivalent to humans using the brain to directly guide the movement of each muscle. However, when humans exercise, the brain does not think too much about the details of the movement of muscles and joints. In fact, the nervous system of higher animals uses a three-level architecture (brain-spinal center-muscle) for motor control, and its motion is generated by a combination of basic motion modules. This motor control architecture offers the possibility to overcome the limitations of robot control system. The main contributions are: 1.The characteristics of the existing robot control system are analyzed, and the relevant results of neuroscience are referenced. We imitate the structure of the neural motor control system, introduce the motion modularity concept into the robot system, and propose a robot control system architecture based on the motion modularity technology, which can reduce the real-time data transmission volume of the bus without losing the accuracy of the trajectory, improve joint autonomy. 2. The theory of Motion Description Language is studied. Combining this theory with the theory of Hilbert's space function decomposition, the MDLg method for robot arm trajectory generation is proposed for the characteristics of manipulator motion, and the motion modularity control system is preliminarily established. 3. The Dynamical Movement Primitives theory is introduced to solve the problem that the dynamic performance of the MDLg method is not good and the number of primitives is indeterminate. The feedback signal is introduced into the dynamical primitive, and a DMP time-coupled controller is designed for the joint, which improves the joint antijamming capability. A more complete motion modularity robot control system is established. The study of the thesis presents a feasible motion modularity solution for robot control system. Based on the research results presented in this paper, a robot control system with motion modularity function is designed, which includes three subsystems: upper controller, fieldbus protocol stack and motor driver. Each part develops special components for the realization of motion modularity technology. The scheme can be applied to an actual robot control system to improve the motion performance of the robot without increasing the fieldbus load. This thesis also contributes to the research and development of key technologies for EtherCAT system and motor driver.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/25942
Collection机器人学研究室
Recommended Citation
GB/T 7714
刘钊铭. 基于运动模块化技术的机器人控制系统研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2019.
Files in This Item:
File Name/Size DocType Version Access License
基于运动模块化技术的机器人控制系统研究.(20853KB)学位论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘钊铭]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘钊铭]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘钊铭]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.