SIA OpenIR  > 机器人学研究室
基于结构化Fisherface的人脸识别新方法
范燕; 吴小俊; 祁云嵩; 张晓如; 宋晓宁
Department机器人学研究室
Source Publication江苏科技大学学报:自然科学版
ISSN1673-4807
2007
Volume21Issue:5Pages:69-72
Contribution Rank2
Funding Organization国家自然科学基金资助(60572034);; 江苏省自然科学基金(BK2004058);; 江苏科技大学电子信息学院青年教师科研立项资助
Keyword特征提取 人脸识别 结构化信息 Fisherface
Abstract特征提取是人脸识别中一个关键步骤。传统的Fisherface人脸识别方法中用样本的类均值和总体均值定义相应的散布矩阵,丢失了样本个体之间的结构信息,本文提出了一种基于原始样本个体结构信息的结构化Fisherface人脸识别方法,最后得到的特征数据中保留了原始样本更多的分布信息。在ORL人脸数据库的实验结果验证了该方法的有效性。
Other AbstractThe feature extraction is one of the key steps in the face recognition.The class mean and the total mean are used to define the corresponding scatter matrices in conventional Fisherface method with which the structure information between samples is discarded.A new feature extraction method named structurized Fisherface is proposed.More distribution information of original samples is preserved in the final feature space.Experimental results from the ORL face database proved the effectiveness of the proposed ...
Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/2620
Collection机器人学研究室
Affiliation1.江苏科技大学电子信息学院
2.中国科学院机器人学开放研究实验室
Recommended Citation
GB/T 7714
范燕,吴小俊,祁云嵩,等. 基于结构化Fisherface的人脸识别新方法[J]. 江苏科技大学学报:自然科学版,2007,21(5):69-72.
APA 范燕,吴小俊,祁云嵩,张晓如,&宋晓宁.(2007).基于结构化Fisherface的人脸识别新方法.江苏科技大学学报:自然科学版,21(5),69-72.
MLA 范燕,et al."基于结构化Fisherface的人脸识别新方法".江苏科技大学学报:自然科学版 21.5(2007):69-72.
Files in This Item: Download All
File Name/Size DocType Version Access License
ZWQKQW0000336.pdf(362KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[范燕]'s Articles
[吴小俊]'s Articles
[祁云嵩]'s Articles
Baidu academic
Similar articles in Baidu academic
[范燕]'s Articles
[吴小俊]'s Articles
[祁云嵩]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[范燕]'s Articles
[吴小俊]'s Articles
[祁云嵩]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: ZWQKQW0000336.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.