SIA OpenIR  > 水下机器人研究室
基于能耗优化的深海电动机械臂轨迹规划
Alternative TitleTrajectory Planning of Deep-sea Electric Manipulator Based on Energy Optimization
白云飞1,2,3; 张奇峰1,2; 范云龙1,2; 翟新宝1,2; 田启岩1,2; 唐元贵1,2; 张艾群1,2
Department水下机器人研究室
Source Publication机器人
ISSN1002-0446
2020
Volume42Issue:3Pages:301-308
Indexed ByEI ; CSCD
EI Accession number20202208714493
CSCD IDCSCD:6766457
Contribution Rank1
Funding Organization国家重点研发计划(2016YFC0300800,2016YFC0300400)
Keyword深海电动机械臂 能耗优化 轨迹规划 径向基神经网络 自适应粒子群优化
Abstract

由于深海电动机械臂动力学模型较为复杂,难以基于动力学模型构建精确的能耗优化目标函数,因此,本文提出一种利用径向基函数(RBF)神经网络构建机械臂功耗模型的方法.首先,利用机械臂水下运动实验数据集训练所构建的RBF神经网络.利用基于该神经网络的功耗模型,结合机械臂关节空间轨迹规划多项式,建立机械臂能耗目标函数.然后,采用自适应粒子群优化(PSO)算法求解最优轨迹参数.结果显示,RBF功耗网络均方根误差(RMSE)为20.89 W;经过优化的轨迹的能耗比实验轨迹的能耗均值降低410.8 J(18.3%).实验结果表明基于自适应PSO算法的轨迹规划方法实现了能耗优化的目标.

Other Abstract

The dynamic model of the deep-sea electric manipulator is complex, so it is difficult to construct an accurate objective function of energy optimization based on dynamic model. Therefore, a method to establish power model of the manipulator is proposed, using radial basis function (RBF) neural network. Firstly, the RBF neural network is trained by using the experimental data set of underwater motion of the manipulator. By utilizing the power model based on the RBF neural network, the energy objective function of the manipulator is established combined with the trajectory planning polynomial of the manipulator joint space. Then, the adaptive particle swarm optimization (PSO) algorithm is used to solve the optimal trajectory parameters. The results show that the root mean square error (RMSE) of RBF power network is 20.89 W, and the energy consumption based on the optimized trajectory is 410.8 J (18.3%) lower than the average energy consumption based on the the experimental trajectory. The experimental results show that the trajectory planning method based on the adaptive PSO algorithm achieves the goal of energy optimization.

Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/26552
Collection水下机器人研究室
Corresponding Author张奇峰
Affiliation1.中国科学院沈阳自动化研究所机器人学国家重点实验室
2.中国科学院机器人与智能制造创新研究院
3.中国科学院大学
Recommended Citation
GB/T 7714
白云飞,张奇峰,范云龙,等. 基于能耗优化的深海电动机械臂轨迹规划[J]. 机器人,2020,42(3):301-308.
APA 白云飞.,张奇峰.,范云龙.,翟新宝.,田启岩.,...&张艾群.(2020).基于能耗优化的深海电动机械臂轨迹规划.机器人,42(3),301-308.
MLA 白云飞,et al."基于能耗优化的深海电动机械臂轨迹规划".机器人 42.3(2020):301-308.
Files in This Item:
File Name/Size DocType Version Access License
基于能耗优化的深海电动机械臂轨迹规划.p(13104KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[白云飞]'s Articles
[张奇峰]'s Articles
[范云龙]'s Articles
Baidu academic
Similar articles in Baidu academic
[白云飞]'s Articles
[张奇峰]'s Articles
[范云龙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[白云飞]'s Articles
[张奇峰]'s Articles
[范云龙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于能耗优化的深海电动机械臂轨迹规划.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.