SIA OpenIR  > 机器人学研究室
基于邻域特征点提取和匹配的点云配准
Alternative TitlePoint Cloud Registration Based on Neighborhood Characteristic Point Extraction and Matching
李新春1; 闫振宇1; 林森1,2,3; 贾迪1
Department机器人学研究室
Source Publication光子学报
ISSN1004-4213
2020
Volume49Issue:4Pages:1-11
Indexed ByEI ; CSCD
EI Accession number20202008654242
CSCD IDCSCD:6708229
Contribution Rank2
Funding Organization国家自然科学基金(No.61601213) ; 辽宁省教育厅科学研究一般项目(No.L2014132) ; 辽宁省自然科学基金面上项目(No.2015020100)
Keyword机器视觉 点云配准 邻域特征 曲率 迭代最近点
Abstract

为解决噪声干扰、数据丢失情况下迭代最近点算法的鲁棒性差、配准精度低等问题,提出一种基于邻域特征点提取和匹配的点云配准方法.首先定义一个由点的k邻域曲率、点与邻近点的法向量内积均值以及邻近点与邻域拟合平面的欧氏距离方差等三部分组成的邻域特征参数,结合在移动最小二乘表面构造的曲率特征参数对点云进行两次特征点提取;其次依据直方图特征定义三个匹配条件,并用双重约束获得正确的匹配点对;最后在配准阶段,采用双向构建k维树的迭代最近点算法实现精确配准.实验结果表明,该算法的配准精度较迭代最近点算法提高了90%以上,并且能够在噪声环境下有效地完成缺失点云的配准,在鲁棒性和精确配准方面有明显优势.

Other Abstract

In order to solve the problem of poor robustness and low registration accuracy of the iterative closest point algorithm under noise interference and data loss, a point cloud registration method based on neighborhood characteristic point extraction and matching is proposed. Firstly, a neighborhood characteristic parameter is defined, which is composed of three parts: the k-neighborhood curvature of the point, the normal vector inner product’ mean value of the point and the neighborhood points, and the distance variance between the neighborhood points and the neighborhood fitted plane. Neighborhood characteristic parameters and curvature characteristic parameters constructed on moving least square surface are used to extract feature points twice. Secondly, three matching conditions are defined according to the histogram features, and the correct matching point pairs are obtained by double constraints. Finally, in the registration stage, the iterative closest point algorithm of bi-directional k-dimension tree is used to achieve accurate registration. The experimental results show that the registration accuracy of the proposed algorithm is more than 90%higher than that of the iterative closest point algorithm, and it can effectively complete the registration of missing point clouds in noisy environment, which has obvious advantages in robustness and precise registration.

Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/26718
Collection机器人学研究室
Corresponding Author闫振宇
Affiliation1.辽宁工程技术大学电子与信息工程学院
2.中国科学院沈阳自动化研究所机器人学国家重点实验室
3.中国科学院机器人与智能制造创新研究院
Recommended Citation
GB/T 7714
李新春,闫振宇,林森,等. 基于邻域特征点提取和匹配的点云配准[J]. 光子学报,2020,49(4):1-11.
APA 李新春,闫振宇,林森,&贾迪.(2020).基于邻域特征点提取和匹配的点云配准.光子学报,49(4),1-11.
MLA 李新春,et al."基于邻域特征点提取和匹配的点云配准".光子学报 49.4(2020):1-11.
Files in This Item:
File Name/Size DocType Version Access License
基于邻域特征点提取和匹配的点云配准.pd(1350KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李新春]'s Articles
[闫振宇]'s Articles
[林森]'s Articles
Baidu academic
Similar articles in Baidu academic
[李新春]'s Articles
[闫振宇]'s Articles
[林森]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李新春]'s Articles
[闫振宇]'s Articles
[林森]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于邻域特征点提取和匹配的点云配准.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.