SIA OpenIR  > 工艺装备与智能机器人研究室
基于新容量退化模型的锂电池RUL预测研究
Alternative TitleResearch on RUL Prediction of Lithium - Ion Batteries Based on a New Capacity Degradation Model
李亚滨1,2; 林硕1; 袁学庆2; 刘竞远2; 李亚滨3,4; 林硕3; 袁学庆4; 刘竞远4
Department工艺装备与智能机器人研究
Source Publication计算机仿真
ISSN1006-9348
2020
Volume37Issue:2Pages:120-124
Contribution Rank1
Keyword新容量退化模型 粒子滤波算法 锂离子电池 剩余使用寿命
Abstract

为准确预测锂离子电池剩余使用寿命(remaining useful life,RUL),建立能有效描述锂离子电池非线性退化特征的模型非常必要。采用新颖的回归方程构建容量退化模型,与双指数退化模型的对比表明:该模型具有更强的描述能力。依赖于此模型,提出了基于新容量退化模型和粒子滤波(particle filtering,PF)算法的锂离子电池剩余寿命预测方法,并与非线性退化自回归模型(nonlinear degradation auto regression,ND-AR)和正则化粒子滤波算法的混合方法(regularized particle filter,RPF)的预测结果做比较。结果表明:该方法对不同锂离子电池具有较好的适应性,能给出比ND-AR和RPF的混合方法更高精度的预测结果,且收敛性较好。

Other Abstract

In order to accurately predict remaining useful life of lithium - ion batteries, building an efficient model that can represents the nonlinear degradation feature of lithium - ion batteries is very essential. In this work, a novel regression equation was adopted to build the capacity degradation model, comparison with double exponential degradation model shows that the model used in this paper has a better description capability. Relying on this model, we proposed a method for Remaining Useful Life (RUL) prediction of lithium - ion batteries based on a new capacity degradation model and Particle Filtering(PF) algorithm, and it was compared with the fusion prognostic method of the nonlinear degradation auto regression model(ND – AR) and the regularized particle filter algorithm(RPF). The results show that the method proposed in this paper has a good adaptability to different lithium - ion batteries, can achieve a more accurate prediction than the fusion method of ND - AR and RPF, and has a good convergence.

Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/26735
Collection工艺装备与智能机器人研究室
Corresponding Author袁学庆; 袁学庆
Affiliation1.沈阳建筑大学信息与控制工程学院
2.中国科学院沈阳自动化研究所
3.沈阳建筑大学信息与控制工程学院
4.中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
李亚滨,林硕,袁学庆,等. 基于新容量退化模型的锂电池RUL预测研究[J]. 计算机仿真,2020,37(2):120-124.
APA 李亚滨.,林硕.,袁学庆.,刘竞远.,李亚滨.,...&刘竞远.(2020).基于新容量退化模型的锂电池RUL预测研究.计算机仿真,37(2),120-124.
MLA 李亚滨,et al."基于新容量退化模型的锂电池RUL预测研究".计算机仿真 37.2(2020):120-124.
Files in This Item:
File Name/Size DocType Version Access License
基于新容量退化模型的锂电池RUL预测研究(1157KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[李亚滨]'s Articles
[林硕]'s Articles
[袁学庆]'s Articles
Baidu academic
Similar articles in Baidu academic
[李亚滨]'s Articles
[林硕]'s Articles
[袁学庆]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[李亚滨]'s Articles
[林硕]'s Articles
[袁学庆]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于新容量退化模型的锂电池RUL预测研究.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.