Knowledge Management System of Shenyang Institute of Automation, CAS
基于新容量退化模型的锂电池RUL预测研究 | |
Alternative Title | Research on RUL Prediction of Lithium - Ion Batteries Based on a New Capacity Degradation Model |
李亚滨1,2; 林硕1![]() ![]() ![]() ![]() | |
Department | 工艺装备与智能机器人研究 |
Source Publication | 计算机仿真
![]() |
ISSN | 1006-9348 |
2020 | |
Volume | 37Issue:2Pages:120-124 |
Contribution Rank | 1 |
Keyword | 新容量退化模型 粒子滤波算法 锂离子电池 剩余使用寿命 |
Abstract | 为准确预测锂离子电池剩余使用寿命(remaining useful life,RUL),建立能有效描述锂离子电池非线性退化特征的模型非常必要。采用新颖的回归方程构建容量退化模型,与双指数退化模型的对比表明:该模型具有更强的描述能力。依赖于此模型,提出了基于新容量退化模型和粒子滤波(particle filtering,PF)算法的锂离子电池剩余寿命预测方法,并与非线性退化自回归模型(nonlinear degradation auto regression,ND-AR)和正则化粒子滤波算法的混合方法(regularized particle filter,RPF)的预测结果做比较。结果表明:该方法对不同锂离子电池具有较好的适应性,能给出比ND-AR和RPF的混合方法更高精度的预测结果,且收敛性较好。 |
Other Abstract | In order to accurately predict remaining useful life of lithium - ion batteries, building an efficient model that can represents the nonlinear degradation feature of lithium - ion batteries is very essential. In this work, a novel regression equation was adopted to build the capacity degradation model, comparison with double exponential degradation model shows that the model used in this paper has a better description capability. Relying on this model, we proposed a method for Remaining Useful Life (RUL) prediction of lithium - ion batteries based on a new capacity degradation model and Particle Filtering(PF) algorithm, and it was compared with the fusion prognostic method of the nonlinear degradation auto regression model(ND – AR) and the regularized particle filter algorithm(RPF). The results show that the method proposed in this paper has a good adaptability to different lithium - ion batteries, can achieve a more accurate prediction than the fusion method of ND - AR and RPF, and has a good convergence. |
Language | 中文 |
Document Type | 期刊论文 |
Identifier | http://ir.sia.cn/handle/173321/26735 |
Collection | 工艺装备与智能机器人研究室 |
Corresponding Author | 袁学庆; 袁学庆 |
Affiliation | 1.沈阳建筑大学信息与控制工程学院 2.中国科学院沈阳自动化研究所 3.沈阳建筑大学信息与控制工程学院 4.中国科学院沈阳自动化研究所 |
Recommended Citation GB/T 7714 | 李亚滨,林硕,袁学庆,等. 基于新容量退化模型的锂电池RUL预测研究[J]. 计算机仿真,2020,37(2):120-124. |
APA | 李亚滨.,林硕.,袁学庆.,刘竞远.,李亚滨.,...&刘竞远.(2020).基于新容量退化模型的锂电池RUL预测研究.计算机仿真,37(2),120-124. |
MLA | 李亚滨,et al."基于新容量退化模型的锂电池RUL预测研究".计算机仿真 37.2(2020):120-124. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
基于新容量退化模型的锂电池RUL预测研究(1157KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment