SIA OpenIR  > 光电信息技术研究室
一种改进的Capsule及其在SAR图像目标识别中的应用
Alternative TitleAn improved Capsule and its application in target recognition of SAR images
张盼盼1,2,3,4,5; 罗海波1,2,4,5; 鞠默然1,2,3,4,5; 惠斌1,2,4,5; 常铮1,2,4,5
Department光电信息技术研究室
Source Publication红外与激光工程
ISSN1007-2276
2020
Volume49Issue:5Pages:1-8
Indexed ByEI ; CSCD
EI Accession number20202408813061
CSCD IDCSCD:6732627
Contribution Rank1
Keyword目标识别 Capsule网络 完全实例化 类脑计算 卷积神经网络
Abstract

为了解决Capsule网络随着输入图像增大计算量和参数数量急剧增加的问题,对Capsule网络进行了改进并将其用于SAR自动目标识别(SAR-ATR)中。基于大脑视觉皮层以层级结构以及柱状形式处理信息的机制,提出了完全实例化的思想,并运用类脑计算对Capsule网络进行了改进。具体方法是:使用多个卷积层实现层级处理,同时使用了较少的卷积核,但每一层使用的卷积核数量随着层级加深逐渐增加,使得提取的特征更加趋于抽象化;在PrimaryCaps层中,Capsule向量由最后一层卷积层输出的所有特征图构成,使得Capsule单元包含目标局部或整体的全部特征,以实现目标的完全实例化。在SAR-ATR上,将改进的Capsule网络与原Capsule网络、传统目标识别算法和基于经典卷积神经网络的目标识别算法进行对比实验。实验结果表明,改进的Capsule网络训练参数和计算量大大减少,并且训练速度得到很大提升,在SAR图像数据集上的识别准确率较Capsule网络和前两类方法分别提高了0.37和1.96~8.96个百分点。

Other Abstract

In order to solve the problem that the Capsule network increases the amount of calculation and the number of parameters increases sharply with the input picture, the Capsule network is improved and the improved Capsule network is used in SAR automatic target recognition (SAR-ATR). In this paper, based on the mechanism of brain visual cortex processing information in hierarchical structure and column form, the idea of complete instantiation was proposed, and the brain-like calculation was used to improve the Capsule network. The specific method was to use multiple convolution layers to achieve hierarchical processing. The number of convolution kernels used in each layer increases with the depth of the hierarchy, which made the extracted abstract features gradually increase. In the PrimaryCaps layer, the Capsule vector consisted of all the feature maps output by the last layer of the convolutional layer, so that the Capsule unit contained all the features of the target part or the whole to achieve full instantiation of the target. On the SAR-ATR, a comparison experiment was performed with the Capsule network, the traditional target recognition algorithm and the target recognition algorithm based on the classical convolutional neural network. The experimental results show that the improved Capsule network training parameters and calculations are greatly reduced, and the training speed is greatly improved, and the recognition accuracy on the SAR image data set is increased by 0.37 and 1.96-8.96 percentage points compared with the Capsule network and the first two methods respectively.

Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/26925
Collection光电信息技术研究室
Corresponding Author罗海波
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院机器人与智能制造创新研究院
3.中国科学院大学
4.中国科学院光电信息处理重点实验室
5.辽宁省图像理解与视觉计算重点实验室
Recommended Citation
GB/T 7714
张盼盼,罗海波,鞠默然,等. 一种改进的Capsule及其在SAR图像目标识别中的应用[J]. 红外与激光工程,2020,49(5):1-8.
APA 张盼盼,罗海波,鞠默然,惠斌,&常铮.(2020).一种改进的Capsule及其在SAR图像目标识别中的应用.红外与激光工程,49(5),1-8.
MLA 张盼盼,et al."一种改进的Capsule及其在SAR图像目标识别中的应用".红外与激光工程 49.5(2020):1-8.
Files in This Item:
File Name/Size DocType Version Access License
一种改进的Capsule及其在SAR图像(2173KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[张盼盼]'s Articles
[罗海波]'s Articles
[鞠默然]'s Articles
Baidu academic
Similar articles in Baidu academic
[张盼盼]'s Articles
[罗海波]'s Articles
[鞠默然]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张盼盼]'s Articles
[罗海波]'s Articles
[鞠默然]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 一种改进的Capsule及其在SAR图像目标识别中的应用.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.