SIA OpenIR  > 机器人学研究室
倾转旋翼无人机非线性建模与模式过渡控制方法研究
Alternative TitleNonlinear Modeling and Mode Transition Control of the Tilt Rotor Unmanned Aerial Vehicle
刘重
Department机器人学研究室
Thesis Advisor何玉庆
Keyword倾转旋翼无人机 动力学建模 增益调度控制 线性变参控制 飞行模式过渡
Pages130页
Degree Discipline模式识别与智能系统
Degree Name博士
2020-05-27
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract为了弥补旋翼无人机与固定翼无人机在续航时间与起降灵活性上的不足,倾转旋翼无人机(tilt rotor unmanned aerial vehicle, TRUAV)的概念被提出。这种飞行器装配有机翼与可在垂直位置、水平位置间倾转的旋翼组件,具有定点悬停与快速巡航等多种飞行模式。然而,这种能力优势使得TRUAV在不同飞行模式下的动力学特性存在较大的差别,加之旋翼与机翼之间的气动干扰、旋翼倾转造成的飞行器结构改变,多种因素使得TRUAV的建模较难在保证合理复杂性的同时兼具模型准确性;另外,面对TRUAV这种欠驱动的强非线性系统,其飞行控制器不仅要具有一定的鲁棒性处理不确定性因素,还需要保证不同飞行模式以及模式过渡过程中的系统稳定,因而设计难度较大。为了解决上述问题,本文开展了如下的研究工作:论文的第1章,对TRUAV的研究背景以及国内外研究现状进行介绍,并阐明当前研究中的不足,进而引出本文的研究内容与意义。论文的第2章,进行TRUAV的主动非线性模型辨识。以一架具有四个可倾转旋翼组件的quad-TRUAV为研究对象,基于一定的建模假设,建立其形式相对简单的非线性动力学模型,并明确其中待估计的未知参数;之后,使用地面实验数据与飞行实验数据,对该模型中的未知参数进行估计;考虑到之前的建模假设一定程度上降低了模型的准确性,进一步采用主动建模方法估计模型差,弥补建模假设以及数据中测量噪声等造成的模型失配,从而在保持传统离线辨识模型合理复杂性的同时提高模型的准确性。论文的第3章,提出基于动力学分析的TRUAV增益调度控制方法。针对上一章建立的quad-TRUAV动力学模型形式,此章首先对其进行解耦分析与模型简化;之后,设计基于旋翼倾转角度且具有平滑切换结构的姿态与高度/速度控制器,进行变旋翼倾转角度时的飞行器模式过渡控制;该增益调度控制策略依赖于quad-TRUAV的动力学模型形式,一定条件下的稳定性分析为此处设计的增益调度策略提供了理论保证。论文的第4章,基于线性变参(linear parameter varying, LPV)理论提出TRUAV的模式过渡鲁棒控制方法。通过引入虚拟控制量,此章将辨识得到的quad-TRUAV的非线性模型转化为依赖于飞行速度的LPV系统形式;同时,设计基于观测器的LPV控制器,处理由于测量噪声或传感器故障所导致的LPV系统的不可测变参,并可实现对于模型差向量的主动估计与补偿;之后,基于虚拟控制量与实际控制量之间的代数关系,通过逆过程设计的实际控制量可实现飞行器加速过程中的模式过渡控制与鲁棒稳定。论文的第5章,搭建quad-TRUAV飞行实验系统并开展飞行实验。此章首先搭建了具有四个可倾转旋翼的quad-TRUAV平台,并为其装配相应的飞行控制系统;之后,开展了quad-TRUAV的姿态控制飞行实验与高度控制飞行实验,以验证所提出部分控制方法的有效性。在结论与展望部分,对论文所开展的研究工作进行总结性论述,并对该领域可能的研究方向进行简要介绍。综上而言,针对TRUAV的非线性建模与模式过渡控制问题,本论文以quad-TRUAV为研究对象,开展了其主动非线性模型辨识、基于动力分析的增益调度控制方法、基于LPV理论的模式过渡鲁棒控制方法、系统搭建与飞行实验等多个方面的研究。主要贡献与创新点在于,采用主动建模方法建立了TRUAV的动力学模型,在保证传统离线辨识非线性模型合理复杂性的同时,提高了动力学模型的准确性;提出了具有动力学模型依据的TRUAV模式过渡增益调度控制方法,有效解决了传统增益调度策略依赖实验尝试、不易开展模式过渡稳定性分析的问题;基于LPV理论建立了TRUAV的模式过渡鲁棒控制器,处理了TRUAV增益调度控制与常规非线性控制在控制器鲁棒性等方面的问题,并提出了一种可处理LPV系统不可测变参的新型控制方法。
Other AbstractTo cover the deficiencies of rotorcraft and fixed-wing unmanned aerial vehicles (UAVs) about flight endurance and flexibility, the tilt rotor UAV (TRUAV) is proposed and designed in recent years. This aircraft is equipped with wings and rotors that could tilt between vertical and horizontal positions, and owns hovering and high-speed cruise flight modes. However, the advantages of the TRUAV induce the dramatically different dynamics in different flight modes, the aerodynamic interactions between wings and rotors, and the change of aircraft structure, which make model accuracy and reasonable complexity unmanageable together. Furthermore, as an underactuated and nonlinear system, its flight controller is required to deal with some uncertainties, and ensure the closed-loop stability in different flight modes and during the mode transition procedure, which make the TRUAV controller design difficult. To solve the problems introduced in the above contents, the study in this dissertation conducts the research as follows: The first chapter of this dissertation introduces the research background and current situation about TRUAVs, and further discusses the problems of current research to lead to the main contents and significance of this dissertation. The second chapter of this dissertation carries out the TRUAV model identification by active model method. With a quad-TRUAV as the study object, this chapter formulates its dynamics by the nonlinear form based on some modeling assumptions, and some unknown parameters that are required to be estimated in the nonlinear model are listed. Then the data from ground and flight experiments are used to estimate the unknown parameters of the nonlinear model. Due to the previous modeling assumptions reduce the model accuracy, the active model method is applied further to estimate the model errors, which are caused by the modeling assumptions and measurement noises mainly. The established quad-TRUAV nonlinear model could ensure the reasonable complexity from the offline model identification, and improve the model accuracy. The third chapter proposes the gain scheduling controller for the TRUAV based on the dynamic analysis. With the nonlinear form of the quad-TRUAV dynamic model in the previous chapter, this chapter decouples and simplifies it first. Then the controller with the smooth switch structure based on the rotor-tilt angle is designed for the flight control in the mode transition procedure with varying rotor-tilt angles. This gain scheduling controller is based on the nonlinear form of the quad-TRUAV dynamic model, and the stability analysis under some conditions is conducted as the theory support of the designed gain scheduling control method. The forth chapter proposes the TRUAV mode transition robust control method based on linear parameter varying (LPV) theory. By introducing some virtual control inputs, the identified quad-TRUAV nonlinear model is transformed as a LPV system scheduled by the flight velocity. Then an observer-based LPV controller is designed to deal with the unmeasurable varying parameters due to the measurement noises and sensor faults, and estimate and compensate the model error vector actively. Based on the algebraic relation between virtual control inputs and applied control inputs, an inverse procedure could obtain the applied control inputs to achieve the mode transition control and robust stability together with the acceleration. The fifth chapter constructs the quad-TRUAV system and conducts the flight experiments. This chapter constructs a quad-TRUAV platform with four tiltable rotors, and assembles the flight control system for it. Then the attitude control experiment and altitude control experiment are conducted with this quad-TRUAV to validate the proposed control methods. The conclusion and prospect part concludes the whole research work, and introduces some promising research points in the field briefly. In general, aiming at the nonlinear model and flight control of the TRUAV, this dissertation focues on a quad-TRUAV as well as its ative nonlinear model identification, gian scheduling control, mode transition robust control, and flight experiments. The main contributions are as follows: the TRUAV dynamic model is identified with the active model method, and the proposed nonlinear model ensures the reasonable complexity together with model accuracy; the gain scheduling control method based on the TRUAV dynamics is proposed for the mode transition procedure, which deals with the dependence on heuristic knowledge of classical gain scheduling methods; based on LPV theory, the TRUAV mode transition robust control method is proposed, which improves the gain scheduling method and classical nonlinear control methods for the controller robustness, and proposes the innovative LPV control with the unmeasurable varying parameters.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/27172
Collection机器人学研究室
Affiliation中国科学院沈阳自动化研究所
Recommended Citation
GB/T 7714
刘重. 倾转旋翼无人机非线性建模与模式过渡控制方法研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2020.
Files in This Item:
File Name/Size DocType Version Access License
倾转旋翼无人机非线性建模与模式过渡控制方(5683KB)学位论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘重]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘重]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘重]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.