SIA OpenIR  > 智能检测与装备研究室
面向位置敏感器件的反馈堆叠信号滤波
Alternative TitleComplex signal filter method for position sensitive devices application using a feedback stacking model based on extreme learning machine
崔昊1,2,3; 郭锐1,2; 李兴强1,2; 冯克建4; 张飞飞4
Department智能检测与装备研究室
Source Publication光学精密工程
ISSN1004-924X
2020
Volume28Issue:7Pages:1568-1576
Indexed ByEI ; CSCD
EI Accession number20203008962843
CSCD IDCSCD:6764019
Contribution Rank1
Funding Organization国家重点研发计划资助项目(No.2018YFB200403) ; 国家自然科学基金资助项目(No.61703393) ; 工信部智能制造综合标准化与新模式应用项目 ; 辽宁省自然科学基金资助项目(No.20180520016) ; 王宽诚教育基金会
Keyword位置敏感器件 极限学习机 数字信号 滤波算法 激光三角法
Abstract

为解决位置敏感器件(PSD)提取光斑位置信息的不准确性,克服元器件、信号处理电路等带来的随机噪声干扰,本文提出了一种基于极限学习机(ELM)的反馈堆叠模型(FsELM)。该模型使用ELM作为基本训练块,以单层预测结果与目标真值的偏差作为依据对输入数据进行更新,并进行循环训练,形成反馈堆叠的结构,从而实现PSD信号有效信息的深度提取。同时设计进行了基于一维PSD的激光三角位移检测实验验证算法的性能,比较了传统滤波算法、经典学习算法、ELM及其变体和本文提出的FsELM方法对数据的处理效果。实验结果表明:FsELM预测精度明显优于其他处理方法,预测结果均方误差可达1.4×10~(-5),预测精度为0.78%;除ELM等单次训练结构外,FsELM模型的运算速度比其他处理方法更快。该结果证明了FsELM在应对随机噪声干扰的优异性能,以及不确定环境下突出的预测能力。

Other Abstract

To minimize position information extraction inaccuracy while using Position Sensitive Devices(PSD),and to overcome noise jamming resulting from components and signal processing circuits, a Feedback stacking model based on Extreme Learning Machine(FsELM)was proposed. FsELM employed Extreme Learning Machine(ELM)as the basic training block, updated the input data based on the differences between the truth values and monolayer predicted results, developed the feedback stacking models by cyclic training, and realized the effective depth extraction information of the PSD signals. Further, a one-dimensional PSD-based laser triangular displacement detection experiment was designed to evaluate the performance of the algorithm. The processing abilities of traditional filtering methods, such as classical learning algorithm, ELM, its variants and the proposed FsELM were compared. The FsELM exhibited a significantly higher prediction accuracy compared to other processing methods. The mean square error and prediction accuracy are 1.4×10-5 and 0.78%, respectively. In addition, the operating speed of the FsELM is higher than that of all the other methods, except for the models with single training structures, such as ELM. The results demonstrate the efficient management of random noise interference and accurate prediction ability of the FsELM in uncertain environments.

Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/27360
Collection智能检测与装备研究室
Corresponding Author崔昊
Affiliation1.中国科学院沈阳自动化研究所智能检测与装备研究室
2.中国科学院机器人与智能制造创新研究院
3.中国科学院大学
4.西安航天发动机有限公司
Recommended Citation
GB/T 7714
崔昊,郭锐,李兴强,等. 面向位置敏感器件的反馈堆叠信号滤波[J]. 光学精密工程,2020,28(7):1568-1576.
APA 崔昊,郭锐,李兴强,冯克建,&张飞飞.(2020).面向位置敏感器件的反馈堆叠信号滤波.光学精密工程,28(7),1568-1576.
MLA 崔昊,et al."面向位置敏感器件的反馈堆叠信号滤波".光学精密工程 28.7(2020):1568-1576.
Files in This Item:
File Name/Size DocType Version Access License
面向位置敏感器件的反馈堆叠信号滤波.pd(939KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[崔昊]'s Articles
[郭锐]'s Articles
[李兴强]'s Articles
Baidu academic
Similar articles in Baidu academic
[崔昊]'s Articles
[郭锐]'s Articles
[李兴强]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[崔昊]'s Articles
[郭锐]'s Articles
[李兴强]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 面向位置敏感器件的反馈堆叠信号滤波.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.