SIA OpenIR  > 海洋机器人前沿技术中心
基于遗传算法的声场重构测量优化方法
Alternative TitleSampling Optimization Method for Acoustic Field Reconstruction Based on Genetic Algorithm
许锋1; 孙洁2,3; 刘世杰2,3
Department海洋机器人前沿技术中心
Source Publication计算机科学
ISSN1002-137X
2020
Volume47Issue:11Pages:304-309
Contribution Rank2
Funding Organization国家科技重大专项(2017YFC0821004) ; 公安部技术研究计划(2016JSYJC59)
Keyword压缩感知 遗传算法 测量优化 水下机器人 声场重构
Abstract

海洋声信道参数空间场能够刻画水声信号在海洋中传播的空间分布规律,对水声通信位置选取、水下目标探测及隐身等具有重要指导意义。针对应用压缩感知重构声场时水下机器人测量路径的优化问题,在结合声场特点、压缩感知和水下机器人的运动特点的基础上,提出了一种基于遗传算法的测量优化方法,以提高压缩感知方法的重构精度。首先分析了声场重构中压缩感知测量矩阵的结构,然后结合水下机器人的运动能力限制,定义了遗传算法中适用于水下机器人测量的基因表达、生成方式以及适应度函数。仿真实验中以高斯随机点的旅行商问题和梳状测量路径为对照,结果表明所提方法能够明显提高声场重构的精度,且对不同采样率及不同分布声场的重构都能够保持更高的精度。

Other Abstract

The spatial field of ocean acoustic channel parameters can describe the spatial distribution law of underwater acoustic signal propagation in the ocean,which has important guiding significance for underwater acoustic communication location selection, underwater target detection and stealth.For the problem of sampling trajectory optimization in the application of compressive sensing(CS)methods on the acoustic field reconstruction,a sampling optimization method based on a genetic algorithm (GA)is proposed to improve the CS reconstruction accuracy in this paper combining the characteristics of sound field,compressed sensing and the motion characteristics of underwater robot.Firstly,the structure of the CS sampling matrix is analyzed. Then,combining with the kinematic constraint of underwater vehicles,the gene expression and generation method as well as the GA fitness function are defined to support the sampling of underwater vehicles.In simulations,the traveling salesman problem (TSP)- based path from Gaussian random sampling points and the lawnmower sampling path are used for comparison.The results demonstrate that the proposed GA-based sampling method can significantly improve the reconstruction accuracy of acoustic fields.The influences of different sampling rates and different acoustic filed distributions are discussed,which further illustrates the superior performance of the proposed method.

Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/27836
Collection海洋机器人前沿技术中心
Corresponding Author许锋
Affiliation1.中国刑事警察学院公安信息技术与情报学院
2.中国科学院沈阳自动化研究所机器人学国家重点实验室
3.中国科学院机器人与智能制造创新研究院
Recommended Citation
GB/T 7714
许锋,孙洁,刘世杰. 基于遗传算法的声场重构测量优化方法[J]. 计算机科学,2020,47(11):304-309.
APA 许锋,孙洁,&刘世杰.(2020).基于遗传算法的声场重构测量优化方法.计算机科学,47(11),304-309.
MLA 许锋,et al."基于遗传算法的声场重构测量优化方法".计算机科学 47.11(2020):304-309.
Files in This Item:
File Name/Size DocType Version Access License
基于遗传算法的声场重构测量优化方法.pd(3078KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[许锋]'s Articles
[孙洁]'s Articles
[刘世杰]'s Articles
Baidu academic
Similar articles in Baidu academic
[许锋]'s Articles
[孙洁]'s Articles
[刘世杰]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[许锋]'s Articles
[孙洁]'s Articles
[刘世杰]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于遗传算法的声场重构测量优化方法.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.