SIA OpenIR  > 机器人学研究室
Alternative TitleRemoving Artifacts from EEG for Brain-Machine Integration Control
熊馨1; 杨秋红1; 周建华1; 徐保磊2; 李永程2; 尹旭贤2; 伏云发1
Source Publication昆明理工大学学报(自然科学版)
Contribution Rank2
Funding Organization国家自然科学基金项目(82060329,81470084, 81771926, 61463024, 61763022) ; 云南省教育厅项目(2020J0052)
Keyword脑电 伪迹 脑机融合控制 独立成分分析 共同空间模式


Other Abstract

Electroencephalogram (EEG) is the typical control signal source of Brain-Machine Integration Control (BMIC). However, EEG signal’s low signal-to-noise ratio, low spatial resolution and susceptibility to artifact contamination poses great challenge to deal with EEG signal in this kind of control system. In this paper, aiming at various artifacts existing in EEG, the authors analyzed and summarizes the methods of EEG artifacts processing and compared their advantages and disadvantages. Finally, in view of the practical needs of BMIC, the future research direction of EEG artifacts processing methods in this field was we pointed out—online, real time, adaptive/ machine learning, without reference channel, few /single channel, combined algorithm to remove artifacts in EEG signal.

Document Type期刊论文
Corresponding Author伏云发
Recommended Citation
GB/T 7714
熊馨,杨秋红,周建华,等. 脑机融合控制中脑电伪迹处理方法[J]. 昆明理工大学学报(自然科学版),2021:1-17.
APA 熊馨.,杨秋红.,周建华.,徐保磊.,李永程.,...&伏云发.(2021).脑机融合控制中脑电伪迹处理方法.昆明理工大学学报(自然科学版),1-17.
MLA 熊馨,et al."脑机融合控制中脑电伪迹处理方法".昆明理工大学学报(自然科学版) (2021):1-17.
Files in This Item:
File Name/Size DocType Version Access License
脑机融合控制中脑电伪迹处理方法.pdf(966KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[熊馨]'s Articles
[杨秋红]'s Articles
[周建华]'s Articles
Baidu academic
Similar articles in Baidu academic
[熊馨]'s Articles
[杨秋红]'s Articles
[周建华]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[熊馨]'s Articles
[杨秋红]'s Articles
[周建华]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 脑机融合控制中脑电伪迹处理方法.pdf
Format: Adobe PDF
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.