一种基于卷积神经网络的图像超分辨率重建方法 | |
Alternative Title | Image super-resolution reconstruction method based on convolutional neural network |
赵怀慈![]() ![]() ![]() ![]() ![]() | |
Department | 光电信息技术研究室 |
Rights Holder | 中国科学院沈阳自动化研究所 |
Patent Agent | 21002 沈阳科苑专利商标代理有限公司 |
Country | 中国 |
Subtype | 发明授权 |
Status | 有权 |
Abstract | 本发明涉及一种基于卷积神经网络的图像超分辨率重建方法,通过数据集训练SRCNN卷积神经网络模型,得到浅层纹理特征信息;建立基于特征转移的八层端到端神经网络模型,将浅层纹理特征信息迁移至该神经网络模型的前四层,得到前四层的模型参数;得到该神经网络模型后四层的模型参数,增强学习到的特征;输入待重建的图像数据,预处理;得到Y通道的高分辨率图像;将Y通道的高分辨率图像、Cb通道图像和Cr通道图像进行融合,得到重建的图像。本发明提出的卷积神经网络模型取得了更佳的超分辨率结果,不管是在主观视觉上还是在客观评价指标上均有明显改善,图像清晰度和边缘锐度明显提高,收敛速度更快,在精细度方面具有更高的优势。 |
Other Abstract | The invention relates to an image super-resolution reconstruction method based on a convolutional neural network, and the method comprises the steps: training an SRCNN convolutional neural network model through a data set, and obtaining the shallow texture feature information; establishing an eight-layer end-to-end neural network model based on feature transfer, and migrating shallow texture feature information to the first four layers of the neural network model to obtain model parameters of the first four layers; obtaining model parameters of four rear layers of the neural network model, andenhancing learnt characteristics; inputting image data to be reconstructed, and preprocessing the image data; obtaining a high-resolution image of the Y channel; and fusing the high-resolution imageof the Y channel, the image of the Cb channel and the image of the Cr channel to obtain a reconstructed image. According to the convolutional neural network model provided by the invention, a better super-resolution result is obtained, the subjective vision and objective evaluation indexes are obviously improved, the image definition and the edge sharpness are obviously improved, the convergence speed is higher, and the method has higher advantages in the aspect of fineness. |
PCT Attributes | 否 |
Application Date | 2017-12-25 |
2019-07-02 | |
Date Available | 2020-12-22 |
Application Number | CN201711417919.0 |
Open (Notice) Number | CN109961396B |
Language | 中文 |
Contribution Rank | 1 |
Document Type | 专利 |
Identifier | http://ir.sia.cn/handle/173321/28074 |
Collection | 光电信息技术研究室 |
Affiliation | 中国科学院沈阳自动化研究所 |
Recommended Citation GB/T 7714 | 赵怀慈,刘明第,郝明国,等. 一种基于卷积神经网络的图像超分辨率重建方法[P]. 2019-07-02. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
CN201711417919.0授权.p(358KB) | 专利 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment