SIA OpenIR  > 水下机器人研究室
综合权值递推最小二乘法估计从UUV航行参数
Alternative TitleSlave-UUV motion analysis using RLS algorithm with synthetical weight
冀大雄; 封锡盛; 刘开周; 康小东
Department水下机器人研究室
Source Publication仪器仪表学报
ISSN0254-3087
2008
Volume29Issue:SPages:304-306
Contribution Rank1
Keyword递推最小二乘法 方位 距离 从uuv航行参数估计 综合权值
Abstract根据主UUV观测系统测量的从UUV方位信息精度高、距离信息精度低的特点,将遗忘因子和位置权值构成的综合权值融入递推最小二乘算法(RLS)用于从UUV航行参数分析,避免采用EKF算法对观测噪声要求高的缺陷,克服数据饱和现象。同时对从UUV方位信息进行预处理以提高航行参数估计的收敛速度。仿真实验证明了方法的有效性。
Other AbstractFor the bearing measurements precision is high, and range measurements precision is low in the underwater observing system, both the forgetting factor and slave-UUV position weight which are called synthetical weights are brought forward into the recursive least squares(RLS) estimator for applying into slave-UUV motion analysis. This mean can avoid the disadvantage of EKF algorithm which is strict to observing noises, and hurdle the data saturation in the RLS algorithm. The pre-process of bearing is also presented for improving the convergent performance of the estimator. Simulation experiments show the validity of the method.
Language中文
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/3506
Collection水下机器人研究室
Corresponding Author冀大雄
Affiliation1.中国科学院沈阳自动化研究所机器人学国家重点实验室
2.中国科学院研究生院
Recommended Citation
GB/T 7714
冀大雄,封锡盛,刘开周,等. 综合权值递推最小二乘法估计从UUV航行参数[J]. 仪器仪表学报,2008,29(S):304-306.
APA 冀大雄,封锡盛,刘开周,&康小东.(2008).综合权值递推最小二乘法估计从UUV航行参数.仪器仪表学报,29(S),304-306.
MLA 冀大雄,et al."综合权值递推最小二乘法估计从UUV航行参数".仪器仪表学报 29.S(2008):304-306.
Files in This Item: Download All
File Name/Size DocType Version Access License
YQYB200806002081.pdf(820KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[冀大雄]'s Articles
[封锡盛]'s Articles
[刘开周]'s Articles
Baidu academic
Similar articles in Baidu academic
[冀大雄]'s Articles
[封锡盛]'s Articles
[刘开周]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[冀大雄]'s Articles
[封锡盛]'s Articles
[刘开周]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: YQYB200806002081.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.