SIA OpenIR  > 工业信息学研究室
一种基于新型数据预测方法的MICA仿真研究
Alternative TitleSimulation of MICA Based on a New Type of Data Prediction
白丽娜; 高翔; 苑明哲; 曹景兴
Department工业信息学研究室
Source Publication计算机仿真
ISSN1006-9348
2009
Volume26Issue:2Pages:134-138
Indexed ByCSCD
CSCD IDCSCD:3594159
Contribution Rank1
Funding Organization国家高技术研究发展计划(863计划)(2006AA04Z185);;辽宁省教育厅项目(2005320)
Keyword广义相关系数法 间歇过程 多向独立元分析法 故障诊断
Abstract在多元统计过程监控中,为解决因未知过程数据统计分布而产生误报漏报的现象,提出一种结合多向独立元分析法(MICA)和广义相关系数(GCC)数据预测的综合方法,进行在线监控过程的仿真。MICA分析方法能有效分解各变量的关联关系,且不需考虑建模数据是否符合正态分布,用此方法计算的独立元变量能更好地描述过程的变化规律。为提高预报未来过程故障的能力,提出用广义相关系数法进行数据预测:确定与运行轨迹相似的监控模型库中的轨迹,并使其相应部分承接于运行轨迹之后。现场采集聚氯乙烯聚合过程的数据进行仿真,仿真结果显示:对于在线监控和在线故障诊断方面,这种新型预测方法优于其它传统处理预测问题的方法。
Other AbstractIn Multivariate Statistical process monitor,an approach of combining Multiway Independent Component Analysis with Generalized Correlation Coefficients (GCC) is presented to deal with the unknown statistic distribution of the data for overcoming the phenomenon of improper diagnosis and to carry out the simulation of online monitoring process. MICA could separate the correlation of variables without considering whether the model data follow the normal distribution or not,and the independent component variables are able to describe the variation of the process well. Furthermore,to improve the ability of predicting future process fault,GCC method is also presented for predicting unknown future data to ascertain the proper corresponding multi-trajectories in history model library and copy the part from the current time point as supplement for the running trajectories being tested. The data from polymerization process of polyvinyl chloride are sampled for simulation of online process monitoring,and the results show that the new prediction method is more effective than other traditional ones for online process monitoring and fault diagnosis.
Language中文
Citation statistics
Document Type期刊论文
Identifierhttp://ir.sia.cn/handle/173321/5610
Collection工业信息学研究室
Corresponding Author白丽娜
Affiliation1.中国科学院沈阳自动化研究所
2.沈阳化工学院信息工程学院
3.沈阳新松机器人自动化股份有限公司
Recommended Citation
GB/T 7714
白丽娜,高翔,苑明哲,等. 一种基于新型数据预测方法的MICA仿真研究[J]. 计算机仿真,2009,26(2):134-138.
APA 白丽娜,高翔,苑明哲,&曹景兴.(2009).一种基于新型数据预测方法的MICA仿真研究.计算机仿真,26(2),134-138.
MLA 白丽娜,et al."一种基于新型数据预测方法的MICA仿真研究".计算机仿真 26.2(2009):134-138.
Files in This Item: Download All
File Name/Size DocType Version Access License
JSJZ200902036.pdf(365KB) 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[白丽娜]'s Articles
[高翔]'s Articles
[苑明哲]'s Articles
Baidu academic
Similar articles in Baidu academic
[白丽娜]'s Articles
[高翔]'s Articles
[苑明哲]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[白丽娜]'s Articles
[高翔]'s Articles
[苑明哲]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: JSJZ200902036.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.