SIA OpenIR  > 水下机器人研究室
神经网络在水下机器人控制中的应用研究
Alternative TitleStudy on AppIication of Neural Networks in Control of Autonomous Underwater Vehicles
叶志超1,2
Department水下机器人技术研究室
Thesis Advisor封锡盛
ClassificationTP242.3
Keyword自治水下机器人 神经网络 内模控制
Call NumberTP242.3/Y41/2001
Pages62页
Degree Discipline模式识别与智能控制
Degree Name硕士
2001
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract水下机器人系统是非线性和时变的动态系统,各自由度之间存在耦合,在运行时常受到外界环境的干扰。因此水下机器人的控制是一个很复杂的问题。作者在论文工作进行的过程中,首先针对“CR-01”6000水下机器人详细地研究了其航行控制系统,对“CR-01”控制系统软件,主要是自动驾驶系统、机载设备控制系统的软件进行了剖析。深入系统地学习了神经网络控制方面的基本理论,以“CR-01”的数学模型为受控对象进行了神经网络内模控制的仿真研究,取得了较好的仿真结果。通过仿真结果说明了神经网络内模控制方案对“CR-01”模型的有效性,同时也说明了构成控制系统的神经网络结构和训练神经网络时训练样本生成策略的有效性。在提高神经网络权值训练速度方面进行了一些探索,将BFGS变尺度法应用到神经网络权值训练上,和普通的误差反传算法相比,训练速度有明显的提高。论文的实验工作是在远程AUV上进行的。在实验之前,先对远程AUV的实验数据进行了辨识,辨识结果表明,用和“CR-01”数学模型相同结构的数学模型(即三阶模型)来对远程AUV的实验数据进行辨识可以获得比较高的精度。同时,用六阶模型进行辨识的结果与三阶模型相比,精度并没有明显的提高。因此,在对“CR-01”进行仿真中所用的神经网络结构可以直接用来训练远程AUV的正模型和逆模型,进而构成远程AUV的航向回路控制系统。在利用已获得的实验数据对神经网络重新训练后构成内模控制系统对远程AUV进行了水池实验,实验结果验证了神经网络内模控制方案的有效性。
Other AbstractControl problems of underwater vehicles have difficulties dew to the non-linearity and time-variety of dynamics property of underwater vehicles. Besides, the coupling between different degrees and the disturbance from the environment make the design of control system a challenging task. During working on the dissertation, the author first studied the heading control system of "CR-01", an AUV, and the theory of neural network control. In the dissertation, the author presents the simulation of neural network internal model control (IMC) system that took the mathematic model of "CR-01" as controlled object. The result of simulation shows the effectivity of the structure of neural networks composing the control system and the effectivity of the scheme choosing the sample for training the weights of neural networks. To improve the convergence speed of training, the author applied the BFGS variable metric method when training neural networks and got obvious enhance on convergence speed compared with normal back-propagation method. The experiment is completed with the Long Distance AUV. Before experiment identification of previous data was executed and the result showed that a high precision could be obtained when identifying the dynamics of Long Distance AUV with the same mathematic model (3-order) as that of "CR-01". And identification showed that there is not an evident difference between the precision of 6-order model and that of 3-order model. So the structure used in the simulation of "CR-01" can be trained as the model or anti-model of Long Distance AUV and then form the control system of heading control loop.After being trained with previous data again, neural networks formed the internal model control system of Long Distance AUV whose effectivity was validated in experiment executed in the pool lab.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/644
Collection水下机器人研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院研究生院
Recommended Citation
GB/T 7714
叶志超. 神经网络在水下机器人控制中的应用研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2001.
Files in This Item:
File Name/Size DocType Version Access License
神经网络在水下机器人控制中的应用研究.p(2884KB) 开放获取--Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[叶志超]'s Articles
Baidu academic
Similar articles in Baidu academic
[叶志超]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[叶志超]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.