SIA OpenIR  > 沈阳自动化所知识产出(2000年前)
 大电网短期负荷预报模型及应用 周洪江1,2 Department 中国科学院沈阳自动化研究所 Thesis Advisor 易允文 Classification TM714 Call Number TM714/Z74/1988 Pages 80页 Degree Discipline 系统理论及应用 Degree Name 硕士 1988 Degree Grantor 中国科学院沈阳自动化研究所 Place of Conferral 沈阳 Abstract 气候变量对于电力负荷的需求有明显的影响，本文研究了一种考虑气象因素进行在线24小时预报的实用方法，本文通过分析两年负荷曲线的特性，总结了人工预报的经验指出了负荷变化的周期性及随机性，提出了一种以天气温度影响为主的适应性预报算法。本文提出的基本负荷模型和气象负荷模型采用了东北电网1986年的实际运行负荷数据进行建模和预报，试验结果表明其相对误差小于4%，精度满足电网的经济调度要求，和人工预报结果相比具有节省工作量，速度快，精度高，便于操作的特点。本文提出的气象负荷模型也可以考虑诸如温度，照度，风速等气象变量对负荷需求的影响。本文中的所有计算都是在沈阳自动化研究所HP-1000计算机上完成的。 Other Abstract The weather variables have a strong impact on the actual value of power load. A practical method of forecast the next 24 hours' load which based on the weather variable is studied in this paper. Though analysing the character of two years load curve and summarizing the experiences of manual forecast, the author pointed out that the power load variation is cyclical and stochastic. An adptive algorithm which consider the effect of average weather temperature is proposed in the paper. The basic load model and weather load model are rasied in this paper. The 1986' s actual load values are used to model and forecast. As shown by the results, the relative erro is less than 4% and this accuracy is well fited for the economic dispatching. This method is speedy, precise, practical and can save man-hours than the manual method. The weather load model in this paper can also be used to consider the effect of humidity, brightness and wind speed. The calcualtion is finished on the HP-1000 computer, which belongs to Sheng Yang Insitvte of Automation. Language 中文 Contribution Rank 1 Document Type 学位论文 Identifier http://ir.sia.cn/handle/173321/716 Collection 沈阳自动化所知识产出(2000年前) Affiliation 1.中国科学院沈阳自动化研究所2.中国科学院研究生院 Recommended CitationGB/T 7714 周洪江. 大电网短期负荷预报模型及应用[D]. 沈阳. 中国科学院沈阳自动化研究所,1988.
 Files in This Item: File Name/Size DocType Version Access License 大电网短期负荷预报模型及应用.pdf（3460KB） 开放获取 -- Application Full Text
 Related Services Recommend this item Bookmark Usage statistics Export to Endnote Google Scholar Similar articles in Google Scholar [周洪江]'s Articles Baidu academic Similar articles in Baidu academic [周洪江]'s Articles Bing Scholar Similar articles in Bing Scholar [周洪江]'s Articles Terms of Use No data! Social Bookmark/Share