中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 机器人学研究室  > 会议论文
题名: An adaptive threshold neural-network scheme for rotorcraft UAV sensor failure diagnosis
作者: Qi JT(齐俊桐) ; Zhao XG(赵新刚) ; Jiang Z(姜哲) ; Han JD(韩建达)
作者部门: 机器人学研究室
会议名称: 4th International Symposium on Neural Networks (ISNN 2007)
会议日期: June 3-7, 2007
会议地点: Nanjing, China
会议主办者: Natl Nat Sci Fdn China, KC Wong Educ Fdn, SE Univ China, Chinese Univ Hong Kong, Univ Illinois, Chicago
会议录: Advances in Neural Networks - ISNN 2007, Pt 3, Proceedings
会议录出版者: SPRINGER-VERLAG
会议录出版地: BERLIN
出版日期: 2007
页码: 589-596
收录类别: CPCI(ISTP) ; EI
ISSN号: 0302-9743
ISBN号: 978-3-540-72394-3
摘要: This paper presents an adaptive threshold neural-network scheme for Rotorcraft Unmanned Aerial Vehicle (RUAV) sensor failure diagnosis. The approach based on adaptive threshold has the advantages of better detection and identification ability compared with traditional neural-network-based scheme. In this paper, the proposed scheme is demonstrated using the model of a RUAV and the results show that the adaptive threshold neural-network method is an effective tool for sensor fault detection of a RUAV.
语种: 英语
产权排序: 1
内容类型: 会议论文
URI标识: http://ir.sia.cn/handle/173321/8554
Appears in Collections:机器人学研究室_会议论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
HYQW000237.pdf(450KB)----开放获取View Download

Recommended Citation:
齐俊桐; 赵新刚; 姜哲; 韩建达;.An adaptive threshold neural-network scheme for rotorcraft UAV sensor failure diagnosis.见:SPRINGER-VERLAG.Advances in Neural Networks - ISNN 2007, Pt 3, Proceedings,BERLIN,2007,589-596
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[齐俊桐]'s Articles
[赵新刚]'s Articles
[姜哲]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[齐俊桐]‘s Articles
[赵新刚]‘s Articles
[姜哲]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: HYQW000237.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace