中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 空间自动化技术研究室  > 学位论文
题名: 六轮摇臂转向架月球车设计与分析
其他题名: Design and Analysis of a Six-Wheeled Lunar Rover with Rocker-Bogie Suspension
作者: 常勇
导师: 马书根
分类号: TP242
关键词: 月球车 ; 摇臂转向架 ; 运动学建模 ; 轮心建模法 ; 准静态模型
索取号: TP242/C36/2010
学位专业: 机械电子工程
学位类别: 博士
答辩日期: 2010-01-24
授予单位: 中国科学院沈阳自动化研究所
学位授予地点: 中国科学院沈阳自动化研究所
作者部门: 空间自动化技术研究室
中文摘要: 月面巡视探测机器人(俗称月球车)是在月面环境下,能够自主或半自主地完成巡视探测、科学考察及样品采集等任务的特种室外机器人,其机构系统的设计要确保月球车具备良好的稳定性能、机动性能、越障性能以及在松软土壤上的通过性能。 本文针对中国科学院知识创新工程方向性项目“月球车月面探测作业支撑技术研究”的实际需求,并在对国内外同类研究进行深入分析的基础上,对月球车的移动机构系统设计、运动学建模、准静态建模、性能分析以及在松软土壤上的通过性能等几个关键问题进行了研究和探讨。 首先,针对月球车在月面环境下的工作要求,完成对月球车移动机构系统的设计。在分析车体稳定性能要求的基础上完成月球车总体尺寸的设计;基于松软土壤上车轮的沉降模型,建立了车轮外形尺寸与车轮的负载、牵引力、行驶阻力的关系,进而完成月球车车轮的尺寸设计;提出月球车摇臂转向架机构的性能评价指标,包括月球车的机动性、越障过程质心平稳性、起伏地表行走平稳性和车轮负载均匀性四个方面,在此基础上完成对摇臂转向架机构的优化设计。 其次,通过对多刚体链式机构和对不规则路面上轮式移动机构运动特性的分析,提出了不规则地形下的轮式移动机器人运动学建模方法——轮心建模法。通过将模型的矢量方程投影到车体坐标系下,详细阐述了轮心建模过程,并从中分析了该模型的特点;应用该方法,建立了六轮摇臂转向架月球车的运动学模型,完成了运动学的分析,确定了模型求解的方法。在此基础上对车体进行了平面行走实验和不规则地形下运动的仿真研究,其结果验证了运动学模型及求解方法的正确性。 再次,分析了月球车的力学性能。建立硬质地面上单个车轮的受力模型;结合车体的平衡状态方程以及摇臂转向架机构的力矩平衡约束,建立了车体三维空间的准静态力学模型,该模型欠约束;根据各车轮协调驱动、共同推进的需求,设定模型求解的目标函数,优化车轮驱动力;将模型的求解方法用于车体力学性能的分析,包括车体的斜面稳定性能、爬坡性能以及越障性能三个方面。其中越障性能分析是针对双侧同时越障和单侧依次越障两种情况,计算了车轮越障时对障碍物表面和地面摩擦系数的要求。最后分析了车体的重心的位置对车体越障性能的影响。 最后,分析了松软土壤上月球车的运动性能。建立了车轮与松软地面相互作用力模型,确定了车轮牵引力的计算方法。结合车体的准静态力学模型,建立了松软土壤上月球车行走的力学模型,并将该模型用于月球车在松软路面上的爬坡性能分析。
英文摘要: The lunar roving vehicle (lunar rover) is a type of surface exploration robot designed to perform the scientific research and sample return tasks on the moon autonomously or semi-autonomously. The mechanical design ensures that the lunar rover possess the capability of stability, gradeability, obstacle-climbing and traversability on soft terrain. This research is supported by Project of Chinese Academy - “Sciences-Study on Key Technology of Lunar Rover”. Based on the investigation and synthesis of the relative studies, the mechanical design, the kinematic modeling, the quasic-static modeling and the performance analysis of the lunar rover are studied in this dissertation. Firstly, the mechanical design of the lunar rover is accomplished according to the requirements of working on lunar surface. The whole dimension of the lunar rover body is determined by the performance of the stability. The sink-model of a rigid wheel on soft terrain is introduced and the dimension of wheel is decided by the relationship among the wheel’s dimension, the load, the drawbar pull and the rolling resistance. The performance evaluation indexes of the rocker-bogie suspension are presented, including mobility, center stability in obstacle climbing, smoothness of motion on wave terrain, and uniformity of wheel’s load distribution. The rocker-bogie suspension is optimized as well. Secondly, a modeling method called “wheel-center modeling” (WCM) for kinematics of a wheeled mobile robot that moves on uneven terrain is presented based on the characteristic analysis of a multi-rigid chain’s motion and a wheeled mechanism motion on uneven terrain. The modeling procedure and the characteristics of the model are introduced in detail by representing the vector equation of the model in the lunar rover body reference frame. Using this method, the six-wheeled lunar rover with the rocker-bogie suspension is modelled. Moreover, the kinematics is analyzed and the solution is presented. The kinematic model is verified by the experiment, where the robot moves on a flat plane, and the simulation, where the robot moves on uneven terrain. Thirdly, the mechanical property of the lunar rover is analyzed. The mechanical model of a single wheel on rigid surface is introduced. The three-dimensional quasi-static model of the lunar rover is derived by combining the equilibrium equations of the lunar rover body and the torque constraints of the rocker-bogie suspension. The quasi-static model is an underdetermined system. Accordingly, the objective function is proposed for the optimal calculation of driving forces, which should pull the vehicle forward cooperatively. Using this optimization method, the mechanical properties of the lunar rover, including stability, gradeability and obstacle-climbing ability, are evaluated. The obstacle-climbing ability is analyzed by considering wheel’s climbing obstacle on both sides simultaneously and by single side successively. The friction coefficients needed for climbing are calculated. At last the effect of the lunar rover’s center of gravity on the performance of obstacle-climbing is analyzed. Lastly, the mechanical property of the lunar rover on soft terrain is analyzed. The wheel-soil interaction force model is introduced, and the method to calculate drawbar pull of the wheel is obtained. Together with the quasi-static model of the rover body, the force model of the rover travelling on soft terrain is derived. The performance of gradeability on soft terrain of the rover is also analyzed.
语种: 中文
产权排序: 1
内容类型: 学位论文
URI标识: http://ir.sia.cn/handle/173321/9247
Appears in Collections:空间自动化技术研究室_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
六轮摇臂转向架月球车设计与分析.pdf(3166KB)----限制开放 联系获取全文

Recommended Citation:
常勇.六轮摇臂转向架月球车设计与分析.[博士 学位论文 ].中国科学院沈阳自动化研究所 .2010
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[常勇]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[常勇]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace