中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 机器人学研究室  > 学位论文
题名: 单壁碳纳米管介电泳操控与纳电子器件装配
其他题名: Manipulation of SWCNTs Using Dielectrophoresis and Integration of Nanoelectronic Devices
作者: 于海波
导师: 李文荣 ; 董再励
分类号: TB383
关键词: 单壁碳纳米管 ; 介电泳 ; 耦合电势介电泳 ; 碳纳米管场效应晶体管
索取号: TB383/Y74/2012
学位专业: 电子机械工程
学位类别: 博士
答辩日期: 2012-05-21
授予单位: 中国科学院沈阳自动化研究所
学位授予地点: 中国科学院沈阳自动化研究所
作者部门: 机器人学研究室
中文摘要: 碳纳米管(carbon nanotube, CNT)自发明以来,因其独特的纳米结构,优异力学特性、极高电导率与热导率等物理、化学特性,在纳米电子学、纳机电系统(NEMS)、传感器等诸多领域表现出了巨大的应用潜力,因而一直是纳米科学技术领域研究的热点。其中,单壁碳纳米管(single-walled carbon nanotube, SWCNT)直径仅为几个埃米至几个纳米,长度通常在微米量级,依靠其电学性质可以被分为金属性、半导体性以及半金属性三种类型。然而其纳米尺度特性与电学多样性,使得单壁碳纳米管纳米器件装配与制造面临巨大挑战。 本文以单壁碳纳米管纳米器件的制造为背景,围绕碳纳米管场效应晶体管(CNT-FET)这一基本纳米器件装配所涉及的相关科学问题,重点开展了基于介电泳机理的碳纳米管操控方法与传感器件实现等研究工作。主要内容包括:碳纳米管介电泳动力学;碳纳米管预处理与表征;碳纳米管介电泳操控与装配实验方法;碳纳米管场效应晶体管理论模型与传感器构建。主要工作如下: 在介电泳操控方面,研究运用大长/径比椭球体等效的方法,推导了碳纳米管在非均匀电场中的极化模型;提出了具有独立栅极、局部耦合电极的芯片结构。对芯片结构进行了优化设计,分析了碳纳米管电学特性与所受介电泳力的关系。针对非介电泳力影响因素,研究了电热流与交流电渗流诱导的流体运动对单壁碳纳米管组装的影响。研究了介电泳实现单壁碳纳米管装配的实验方法和条件,进行了单壁碳纳米管介电泳装配实验验证。 在单壁碳纳米管溶液制备与表征方面,针对单壁碳纳米管超声分散技术,研究了基于表面活性剂的非共价键修饰方法。开展了基于吸收光谱的单壁碳纳米管溶液的表征、评价方法研究,开展了超声-离心条件对分散的影响,单壁碳纳米管在溶液中的分散状态等研究。针对单壁碳纳米管材料的提纯与单分散制备,建立了碳纳米管离心动力学模型,进行了碳纳米管在离心力作用下的仿真分析与实验方法研究。上述研究工作,为碳纳米管材料的有效预处理提供了有意义的方法。 在规模化碳纳米管装配技术方面,提出了基于PDMS微流控管道的介电泳装配方法,建立了自动化的介电泳实验平台。开展了具有介电泳批量化碳纳米管装配方法研究,实现了半导体性与金属性两种单壁碳纳米管在梳状交叉电极与指状电极结构上的有效装配。分析了交流电场信号频率、幅值以及装配时间对单壁碳纳米管装配的影响,并开展了相关装配结果测试实验研究。 在碳纳米管场效应晶体管器件研究方面,分析了P-型、N-型与双极性碳纳米管场效应晶体管的形成机理。基于碳纳米管弹道输运假设数值模拟了碳纳米管手性、介电层厚度、栅极电压对电流输运特性的影响。分别利用钨与钯电极建立了P-型碳纳米管场效应晶体管,并首次利用钨电极实现了P-型与N-型的转化。 分析了退火、高真空以及原子力显微镜纳米焊接,对碳纳米管场效应晶体管电学特性的影响。进一步研究了金属性碳纳米管与半导体性碳纳米管纳米器件的温度特性。 本文的研究工作对碳纳米管基纳米器件的材料制备、介电泳装配,碳纳米管场效应晶体管与传感器设计具有一定的理论参考与实验指导意义。
英文摘要: Due to their unique geometric structures, excellent mechanical properties, extremely high conductivity and thermal conductivity, carbon nanotube (CNT) has been one of the most popular research topics in the field of nanotechnology since they were invented. It has been showed that CNT can potentially be used in the fields such as nanoelectronics, nanoelectromechanical systems (NEMS) and nanosensors. It is known that the diameter of single-walled CNT (SWCNT) ranges from subnanometer to several nanometers, and that the length of SWCNT is usually on the order of micrometers. According to their electric properties, SWCNT can be divided in to three types, which are metallic, semiconducting and semimetallic, respectivlely. Due to the nano-scale characteristic and the diversity of electric properties of SWCNT, it is more challenging to assemble and to fabricate the SWCNT-based nanodevices. The background of dissertation is the fabrication of SWCNT-based nanodevices. Focusing on these problems related to the assembly of SWCNT-based field effect transistor (CNT-FET), this work mainly discuss the manipulation of dielectrophoresis (DEP) and the processing techniques for the sensor application. The research contents in this work include the dynamic of DEP, the pretreatment and characterization of SWCNTs, the experiments of SWCNT assembly using the DEP and coupling-potential DEP methods, as well as the electrical conduction model of CNT-FET and the fabrication of sensors. The main work is as follows: Regarding the manipulation of SWCNT using DEP, a polarized model of CNT is developed and the relation between the electric properties of CNT and the DEP force is analyzed, in which the CNT is equivalent to an ellipsoid with a large length-diameter ratio. A new chip structure with a local gate electrode and a local coupling electrode is proposed. The chip structure is optimized. The relation between the DEP force and the electric type of SWCNT is discussed. In order to analyze the influence of non-DEP forces on the assembly of SWCNT, the electrothermal flow and the AC osmosis are studied. The effective manipulation of DEP is studied theoretically and experimentally. Finally, the fundamental experiments are carried out to verify the DEP parameters. In the study of pretreatment and characterization of SWCNT, the non-covalent functionalization of SWCNT based on surfactants is studied to disperse SWCNTs using the sonication technique. The UV-vis-NIR absorption spectra is introduced to characterize and evaluate the dispersion of SWCNTs. The dispersion state of SWCNTs is analyzed. The influence of sonication conditions on the dispersion of SWCNTs is investigated. To purify SWCNT materials and thus to realize the monodisperse of SWCNTs in the solution, a centrifugal model of CNT is developed. The deposition movement of CNT under the centrifugal force is studied theoretically and experimentally. This work can be helpful for realizing the effective pretreatment of CNT materials. In the study of large-scale manipulation of CNT, a method combined the micro-channel with DEP is developed and a automated platform is developed for realizing the batch assembly of SWCNTs. In experiments, the semiconducting and metallic SWCNTs are assembled on the comb-electrode and tip-electrode structures, respectively. The influences of magnitude and frequency of AC signal on the assembly of SWCNT are discussed. The electric properties of assembled SWCNTs are also measured and discussed. In the study of CNT-FET and its potential application, the mechanism to form the p-type, n-type or bipolar contact between the SWCNT and the electrodes is analyzed. Based on the assumption of ballistic transport of SWCNT, the influences of the chiralities, the dielectric thickness and the gate voltage are analyzed by the numerical method. Adopting the W and Pd electrodes, the p-type CNT-FETs have been fabricated. We study the change of CNT-FET from p-type to n-type in an extremely high vacuum circumstance. The influences of annealing, high vacuum and AFM nanowelding on the electronic performance of CNT-FET are studied. Furthermore, the temperature-dependant properties of sensor based on the metallic and semiconducting SWCNTs are measured and discussed, respectively. The work in this dissertation about the preparation of SWCNT materials, the DEP assembly, and the design of CNT-FET and the nanosensor devices can be very useful in the experimental methodology and theoretical analysis.
语种: 中文
产权排序: 1
内容类型: 学位论文
URI标识: http://ir.sia.cn/handle/173321/9373
Appears in Collections:机器人学研究室_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
单壁碳纳米管介电泳操控与纳电子器件装配.pdf(7452KB)----限制开放 联系获取全文

Recommended Citation:
于海波.单壁碳纳米管介电泳操控与纳电子器件装配.[博士学位论文].中国科学院沈阳自动化研究所.2012
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[于海波]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[于海波]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace