中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 机器人学研究室  > 学位论文
题名: 基于MEMS与AFM的纳米管道系统制作方法研究
其他题名: Research on the MEMS and AFM Based Fabrication Method of Nanofluidic Channel Systems
作者: 王志迁
导师: 童兆宏 ; 董再励
分类号: TB383
关键词: 原子力显微镜 ; 纳米管道 ; 纳流控 ; 微流控 ; 阳极键合
索取号: TB383/W39/2011
学位专业: 机械电子工程
学位类别: 博士
答辩日期: 2011-11-25
授予单位: 中国科学院沈阳自动化研究所
学位授予地点: 中国科学院沈阳自动化研究所
作者部门: 机器人学研究室
中文摘要: 微纳米技术被认为是21世纪科技发展的新动力。近年来发展起来的微流控芯片技术在降低生物试剂成本、提高效率、改善分析精度、提高生物学、医学研究水平等方面起到了重要作用,极大促进了相关领域的科学技术发展。随着技术进步,生物医学技术已开始发展到分子、DNA、蛋白质等纳米尺度水平,需要更高灵敏度的检测分析技术,因此更小尺度的芯片技术——“纳流控”开始成为新的技术发展热点。 本论文以纳米制造和生物医学领域技术发展需求为背景,围绕“纳流控”芯片制造技术所涉及的科学问题和实现技术,重点开展了面向“纳流控”系统制造的关键技术研究。 本文的主要研究内容包括:具有自配准电极的纳米管道系统设计,基于原子力显微镜(atomic force microscope, AFM)操作的纳米沟道加工方法,纳米管道封装方法,纳米管道通畅性测试技术,实验系统构建和实验方法等。主要工作如下: l  运用微机电系统(micro-electro-mechanical systems, MEMS)加工工艺和纳流控芯片工作机理,完成了具有微沟道、微储液池和微电极结构的硅基微芯片的设计和制作。 l  运用原子力显微镜纳米操作机器人技术,通过开展探针刻划加工控制方法和实验研究,构建了基于探针刻划技术的纳米沟道加工深度与压力关系模型,构建了加工摩擦力和压力的关系模型,实现了轨迹重复的纳米沟道可控加工,为基于原子力显微镜操作的纳米沟道加工提供了理论指导和实验参考。 l  运用原子力显微镜探针刻划加工技术,在具有电极阵列的硅基微沟道芯片上,研究了纳米沟道可控加工方法,实现了具有纳米间隙自配准电极阵列的22nm深纳米沟道芯片的加工。 l  研究了玻璃-硅材料的阳极键合方法,搭建了阳极键合平台,实验研究得出了500nm厚二氧化硅的合适键合条件(温度、电压和时间);同时,系统研究了纳米厚度的金电极电导与键合温度和时间的关系。通过实验分析研究,得出采用钛/铂双层结构和适宜的键合温度,有效实现了具有自配准电极阵列的纳米管道芯片封装。 l  使用异硫氰酸荧光素溶液(fluorescein isothiocyanate, FITC),在负压条件下进行了纳米管道系统的通畅性研究,实验表明上述加工方法实现的纳米管道系统是通畅的。 l  构建了基于带电纳米颗粒的纳米管道通畅测试实验平台,完成了粒子通过信号测试实验研究,实验表明,带电粒子通过具有自配准电极阵列的纳米管道系统具有明显的电信号响应。 本文的研究工作,为制造纳流控芯片提供了一条可行的技术途径,对原子力显微镜纳米加工技术的进一步发展具有一定的理论参考及实践指导意义。
英文摘要: Micro/nano technology is considered as the new driving force for the development of science and technology in the 21st century. Recently, microfluidics has been increasingly widely applied and researched  in diagnosis, drug screening, environmental monitoring and food safety, which plays an an important role in reducing the cost of biological agents, improving the efficiency and the accuracy of analysis, and improving the level of biological and medical research. However, with the development of technology, biomedical research and applications have begun at the molecular, DNA, and protein level. Microfluidics has not been capable to meet the requirements of detection and analysis of smaller scales, smaller doses, and higher detection sensitivity at the molecular level. Therefore, the smaller-scale chip technology -"nanofluidics" begin to be a new research focus. Taking nanofabrication and the demand for biomedicine development as the research background and according to the problems that exist in fabrication of nanofluidic chips, this dissertation focuses on researching on the key technique of the fabrication of nanofluic system. In this dissertation, the main study contents are designing of nanochannel systems with self-aligned electrodes, and researching on the AFM-based nanochannel fabrication, nanochannel encapsulation, and manufacturing and testing of nanochannel systems. The main points: Applying the MEMS process and the work mechanism of nanofluidic chips, Si-based microchips with microreservoirs, microchannels and microeletrodes are designed and fabricated. Applying the operating technique of AFM nanorobots, the controlling method of AFM-based nanolithography is studied experimentally. The AFM nanolithography based nanochannel fabrication models are built. They describe the relationships between the nanochannel depth/friction force and the normal force, respectively. The controllable repeated nanochannel fabrication is realized. The studies provide theoretical guide and experimental reference for nanochannel fabrication. Applying AFM-based nanolithography, the controllable nanochannel fabrication method is studied, and the nanochannel chip with a 22nm deep nanochannel and self-aligned electrodes is realized successfully. In the study of nanochannel encapsulation, the anodic platform is built, and the right bonding condition (temperature, voltage and time) for 500nm thick SiO2 layers is studied experimentally. And the relationship between the conductance of nano-thick Au layer and the temperature/time is studied systematically. Through analysis and study of experiments, the Ti/Pt double layers are selected and the right temperature is obtained. Lastly, the nanochannel chip with self-aligned electrodes is realized effectively. The patency test of nanochannel systems is studied using FITC under the subatmospheric condition. Experiments show the fabricated nanochannel system using the above fabrication method is passed through by FITC. The experimental setup for the charged-nanobead based patency test of nanochannel systems is built. And the charged-nanobead based patency test is studied experimentally. Experiments show the electrical response to the event that the charged nanobeads pass through the nanochannel sysem with self-aligned electrodes is obvious. This research provides a feasible technology for the manufacture of nanofluidic chips, and provides some theoretical and practical reference guide for the further development of AFM based nano-processing technology.
语种: 中文
产权排序: 1
内容类型: 学位论文
URI标识: http://ir.sia.cn/handle/173321/9383
Appears in Collections:机器人学研究室_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
基于MEMS与AFM的纳米管道系统制作方法研究.pdf(5381KB)----限制开放 联系获取全文

Recommended Citation:
王志迁.基于MEMS与AFM的纳米管道系统制作方法研究.[博士 学位论文 ].中国科学院沈阳自动化研究所 .2011
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[王志迁]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[王志迁]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace